Bespoke Tools:
Adapted to the Concepts Developers Know

Brittany Johnson, Rahul Pandita, Emerson Murphy-Hill, and Sarah Heckman
Department of Computer Science
North Carolina State University, Raleigh, NC, USA
{bijohnso, rpandit}@ncsu.edu, {emerson, heckman}@csc.ncsu.edu

ABSTRACT

Even though different developers have varying levels of ex-
pertise, the tools in one developer’s integrated development
environment (IDE) behave the same as the tools in every
other developers’ IDE. In this paper, we propose the idea of
automatically customizing development tools by modeling
what a developer knows about software concepts. We then
sketch three such “bespoke” tools and describe how devel-
opment data can be used to infer what a developer knows
about relevant concepts. Finally, we describe our ongoing ef-
forts to make bespoke program analysis tools that customize
their notifications to the developer using them.

Categories and Subject Descriptors

D.2.6 [Software Engineering]: Programming Environments—

Integrated environments
General Terms

Tools

Keywords
adaptive tools, IDE, concept models

1. THE PROBLEM

Today’s integrated development environments (IDEs) are
one-size-fits all; every developer gets the same IDE and set
of tools. For example, developers who use Eclipse have
thousands of tools cluttering their IDE’s user interface, even
though most developers use only a few tools [1]. As another
example, while experts may find the git interface powerful,
novices can find git’s interface confusing [2].

One can customize their IDE and toolset, but the process
is manual. For example, Eclipse offers about a dozen dif-
ferent distributions (Eclipse for “Java EE Developers”, for
“Eclipse Committers”, and so on), each of which comes with
a different set of tools. In the git example, a developer expe-
rienced with version control might use the default git client.
However, a developer with less experience might choose a
client designed for ease of use, such as SmartGit.*

"http://www.syntevo.com/smartgit/

Such manual customization is undesirable for several rea-
sons. First, to choose among alternative tools, a developer
must be aware that alternatives exist, yet lack of awareness
is a pervasive problem in complex software like IDEs [3].
Second, even after being aware of alternatives, she must be
able to intelligently choose which tool will be best for her.
Third, if a developer’s situation changes and she recognizes
that the tool she is currently using is no longer the optimal
one, she must endure the overhead of switching to another
tool. Finally, customization takes time, time that is spent
fiddling with tools rather than developing software.

2. WHAT IS THE NEW IDEA?

Our idea is bespoke tools: tools that automatically fit
themselves to the developer using them. We envision be-
spoke tools that adapt their user interfaces based on mod-
els of what a developer knows about software concepts. By
a concept, we mean an abstract notion that is applicable
across software systems, such as polymorphism, erasure of
Java generics, and the model-view-controller pattern. We
argue that IDEs and tools that model developers’ knowledge
of concepts could help developers more effectively use soft-
ware tools. In this paper, we specifically outline the benefits
for new static analysis tool users, logging tool users, and de-
velopers that have difficulty with tool output. Bespoke tools
can prioritize notifications and present information in ways
that align the developer’s experience with relevant concepts,
improving each individual developer’s experience.

3. WHY ISIT NEW?

Our own single most related paper describes degree-
of-knowledge [4], which is similar to our idea of concept mod-
eling in that both use developer data to model individual
developers’ knowledge. Others have modeled and used simi-
lar data. For instance, JADEITE models API usage to recom-
mend APT usage examples [5]. Likewise, WHOSEFAULT mod-
els code expertise to recommend an appropriate developer to
fix a bug [6]. In contrast to such prior work, which models
developers’ knowledge of one system (for example, knowl-
edge of method foo), our idea models conceptual knowledge
(for example, knowledge of method overloading).

Our idea builds on two areas outside software engineering:
intelligent tutoring systems and adaptive user interfaces.

Intelligent Tutoring Systems (ITS). ITS are designed to
automatically adapt lesson plans to a student’s individual
needs [7]. Like our work, ITS also model concepts, albeit
for students rather than developers. However, concept mod-
els in ITS are constructed by regularly posing questions to
students, whereas asking professional software developers to

answer programming questions may be prohibitively bur-
densome. Consequently, we aim to build developer concept
models based on a developer’s existing data, such as that
from code, code reviews, and IDE interactions.

Adaptive User Interfaces (AUI). Benyon was one of the
first to suggest how to adapt software’s user interface, assess
user differences, and identify factors to consider for adapta-
tion [8]. Although there are many implementations of the
AUTI in various Human—Computer Interaction contexts, one
is described in the single most related paper by oth-
ers: Zou and colleagues’ adaptive menus in Eclipse [9]. By
modeling how often a developer uses menu items, this AUT
removes menu items that are used infrequently. Such work
aims at modeling software usage, rather than conceptual
knowledge; our idea, in contrast to existing AUI approaches,
aims to model developers’ knowledge of programming con-
cepts.

4. SKETCHES OF BESPOKE TOOLS

We next sketch three examples where we hypothesize that
bespoke tools would improve developer productivity.

4.1 Initial Experience with Static Analysis

Static analysis tools, which analyze source code to find po-
tential bugs, are cheap to run, and can find substantial prob-
lems in software [10]. Still, one problem with such tools is
that they can produce thousands of notifications, and devel-
opers can have difficulty prioritizing these notifications [11].
Thus, initial user experience with static analysis tools could
be improved if they helped developers prioritize which noti-
fications should be addressed first.

Tools like Coverity? prioritize bugs by severity (how bad
the bug is) and confidence (how sure the tool is that the
bug is really a bug). While these are important aspects of
prioritization, neither is sufficient to guarantee a positive
initial user experience. We propose two additional criteria
to prioritize notifications in a bespoke static analysis tool:

e Prioritize notifications that the developer will
understand. For example, Coverity may suggest a
developer “Prevent multiple instantiations of singleton
objects” by pointing out that an instance of a non-
volatile, static singleton method is not thread safe. To
fully understand this notification, the receiving devel-
oper should know something about the concepts of lazy
initialization, volatile, static members, object initial-
ization, and multithreading.

e Prioritize notifications that are easy to fix. For
the notification above, the tool’s documentation sug-
gests making the singleton field volatile. To assess the
cost of fixing this notification, the developer should
understand the concept of volatile fields, including the
performance penalty incurred by volatile fields.

We argue that integrating these two prioritization criteria
with severity and confidence could lead to a better initial
user experience of static analysis tools. The notification
about lazy initialization would be prioritized if the devel-
oper is knowledgeable about the concepts relevant to the
notification and its fix. But how can a bespoke tool predict
what a developer knows about those concepts?

We propose that IDEs for bespoke tools model a devel-
oper’s knowledge (Figure 1). Each concept would have a

2http://www.coverity.com/products/code-advisor/

different model, and each individual developer would have
a different instantiation of each model. For example, a
bespoke static analysis tool would have a model for what
a developer knows about Java’s volatile keyword, a model
for lazy initialization, and a model for multithreading per-
formance. It might further create models that aggregate
knowledge from submodels, such as a model of general mul-
tithreading knowledge that combines relevant models. The
input to a model is a variety of developer data; the out-
put is a number representing a developer’s knowledge of one
concept.

Suppose we wish to model what a developer knows about
lazy initialization. One source is the source code she has
authored; for instance, the more times she has implemented
a lazy factory pattern, the more she may know about lazy
initialization. Another source is a developer’s code review
data; if she has spent time interacting with code that imple-
ments this pattern, she may know more. Yet another source
would be the tools a developer uses; if she has used the
“Introduce Factory” refactoring tool, she may know more.
Each of these sources of data are weighted differently in the
model. For instance, the developer’s code may be weighted
more heavily than her tool usage data.

As a whole, we imagine an IDE that continually monitors
a developer’s behavior (Figure 1, top) to build and refine
models of a wide variety of concepts (Figure 1, middle).
Bespoke tools then synthesize these models to adapt their
user interface accordingly (Figure 1, bottom).

4.2 Improving Code with Logging Tools

Logs support developers when diagnosing run-time prob-
lems, and logging tools can help them to effectively imple-
ment logging. A recent tool called LOGADVISOR recom-
mends where a developer should add a log statement based
on contextual features that commonly surround log state-
ments [12, 13]. For example, LOGADVISOR might infer that
logging is often performed within catch statements when
a FileNotFoundException exception is thrown; then, Lo-
GADVISOR makes a recommendation to insert logging where
those features appear, but no logging exists.

We argue that bespoke logging tools could further assist
developers with logging decisions by using conceptual mod-
els to determine when and how to make a suggestion. Al-
though useful to developers new to logging, other developers
may have made the informed decision to not include logging
statements in some places. Therefore, developers knowl-
edgable about logging may not find the notifications useful,
or even annoying at times. We propose two additional ways
to provide developers with logging advice:

1. Provide advice when in unfamiliar contexts. To
know how to log in a particular context, it helps if the
developer has experience with the concepts relevant to
that context. For a developer to know to log when a
FileNotFoundException is thrown, they would have to
have done so at some point or have written code that
catches that exception. If the developer understands
logging, exception handling, and FileNotFoundExcep-
tions, LogAdvisor could skip providing advice.

2. Provide advice based on individual developer
knowledge. Logging tools could filter advice and sug-
gestions by using models that can predict an individ-
ual developer’s knowledge of logging as a concept. For

I L I L I L o
Code Tool Use Bug Fixes =
Review (=g
o
-
(%]
Ly : Volatile Multithreading o
Initialization /: \ o, [| N\ gy freeeeeeeeees X E , K
= Model Model . Model . Model ’ o
Model N / \ /!)
e e e A===== —_
ol 1 1 wn
U - W i i
% LUILEIL e UZIL] RUNPEEEEEE e LU ILJLL |
© Bespoke Static ! ' ! ! —
Analysis A= e e Bespoke i Bespoke 1 o
Prioritization H Tool Hin Tool H o
\ AN g wn

Figure 1: A bespoke IDE architecture

example, a bespoke tool could predict how well she
understands logging based on how often she uses it
correctly (without major subsequent revisions) in her
code. As her experience with logging increases, the
tool provides advice and suggestions less often while
keeping the suggestions available if the developer is
interested.

A similar set of models proposed for static analysis tools
could be used for a bespoke version of LOGADVISOR. One
would be a model of exception handling knowledge. To
model exception handling, one source of data would be code;
the more she has written involving exceptions, the more she
may know. Nonetheless, more does not necessarily imply
greater knowledge, as some developers might add exceptions
routinely without much consideration. We could also deter-
mine how often the developer moves, removes, or changes
relevant code. Presumably if she removes, moves, or changes
just the exception or code involving the exception, she has
an informed reason for doing so.

4.3 Understandable Program Analysis Output

While prioritization of static analysis notifications may
help with initial user experience, developers still may en-
counter notifications that they do not understand [11]. Other
types of program analysis tools, such as code coverage tools
and model checkers, output complex notifications that de-
velopers may likewise have trouble understanding.

Bespoke program analysis tools could improve the ability
for tools to communicate in ways that align with the expe-
rience and knowledge of the developer using the tool. For
example, FindBugs provides the following notification:

There is a statement or branch that if executed guar-
antees that a value is null at this point, and that value

that is guaranteed to be dereferenced (except on for-
ward paths involving runtime exceptions).

A developer who is less familiar with the concepts of null
values and pointers might find this notification difficult to
understand. In contrast, a developer who is very familiar
with both concepts might find this notification too verbose.

A bespoke tool that models what a developer knows about
programming concepts could adapt the notification to the
developer looking at it. To continue the above example, if
a developer knows little about the concept of null values,

the message would be more verbose, perhaps providing links
to relevant online material. If a developer knows all the
relevant concepts well, the notification could instead simply
say “potential null dereference,” and point her to the code
where null value may be dereferenced and the relevant prior
statement or branch.

Like the other examples, the code that the developer has
written is a useful source of data for hints about a devel-
oper’s knowledge of a concept. For the null-pointer notifica-
tion, this includes checks for null values and catch blocks for
NullPointerExceptions that have actions. Another source
would be notifications she has already resolved; if the de-
veloper has resolved notifications of the same kind or notifi-
cations that involve the same concepts, the developer likely
has some knowledge of the underlying concepts.

S. PROGRESS SO FAR

We have started to explore the feasibility of our idea by
collecting data to answer the research question, “Can we pre-
dict conceptual knowledge using existing developer data?”
As a starting point, we chose to begin with the concept of
dereferencing null values because it is a common concept
for many program analysis tools. We have started to analyze
publicly available code as a source of developer data.

We recruited developers from GitHub and students from
our university to complete a concept inventory we created to
assess each developer’s knowledge of null value dereferenc-
ing. The items on the inventory serve as an oracle for what
each developer knows about the concept. Then, for each de-
veloper, we analyzed their GitHub repositories and counted
the null checks that they added and removed. Next, we
built a linear regression model to correlate a developer’s con-
cept inventory score with her null check counts. We expect
to see a correlation between the two as a proof of feasibility
of our idea. As a baseline for developer experience, we used
lines of code added by the developer; research suggests that
one major indicator of developer experience is the code they
have written [4, 14]. Therefore, we also built a linear re-
gression model to correlate a developer’s concept inventory
score with lines of code she has written for comparison.

These findings suggest that, though there is currently a
large margin of error with our small data set (17 developers),
null checks added and removed may predict an increase in
knowledge better than lines of code added. Although both

models predict knowledge within 1 point of the developer’s
total inventory score (out of 9) 47% of the time, there is
a positive correlation in the null checks model while there
was a negative correlation between the lines of code added
and the inventory score. One way to interpret these results
is that the more code a developer writes, the less often they
have to think about the null checks they write in their code.
Though they may generally understand the concept, as no
participant did poorly on the inventory, they may eventually
move detailed knowledge of null objects and dereferencing
out of active memory. This suggests time is another variable
to consider when measuring knowledge. Another interpreta-
tion, which could coexist with the first, is that an increase in
null dereference checks would be more likely to predict an
increase in knowledge, which is what we intend to monitor,
than using lines of code written alone.

6. CHALLENGES

The idea of bespoke development tools presented in this
paper appears promising, but let us consider a few of the
challenges in implementing bespoke development tools. One
major challenge is gathering the requisite developer data
to build concept models. The easiest data to collect for
model building may be source code, since version control
systems are widely used, but other data such as IDE usage
data are less common. Even if a developer decides to start
collecting usage data to take advantage of bespoke tools,
past uses of the tool might not have been recorded at all, and
thus some concept models could initially be inaccurate. This
could lead to false positive adaptations, such as treating a
developer with more experience like one with less experience
due to lack of data. It would beneficial to consider allowing
developers access to augmenting their model with data of
their own. Without the ability to easily do so, developers
may not want to use the tools at all [11].

Another challenge is that changing tools’ user interfaces
may make it difficult for developers to transition between
user interfaces. The advantage of the unchanging tool inter-
faces we see today is that the developer can expect to see
the same interface the next time they return to it. When
bespoke tools change their user interfaces as developers be-
come more experienced, such a change could be disorienting
and confusing. Such bespoke tools should therefore ensure
that the user interface changes gradually. To decrease the
number of needless adaptations, bespoke tools could allow
developers to self-report their experience to improve the pre-
dictions. It should also be possible for the developer to turn
off the adaptations.

A third challenge is the effort involved in scaling up the
idea. The space of potential concepts that could be modeled
is enormous; for instance, the concepts for a single program-
ming language are described in the language’s specification,
and many developers use multiple programming languages
and tools. There are numerous relevant considerations, such
as how often the developer writes relevant code and time in
between uses. From a toolsmith’s perspective, it is difficult
enough to create one developer-friendly tool, let alone to
create a tool that changes over time. These challenges high-
light the need for reusable patterns and frameworks that can
make the job of implementing bespoke tools easier.

7. CONCLUSION

In this paper we advocated for the idea of bespoke tools.
While today’s IDEs and the tools within them require the

developer to change her behavior to fit with the way tools
work, we believe that bespoke tools can enable the opposite;
tools that change to fit the ways that developers work. Al-
though the evidence for feasibility that we have presented
here is modest and the challenges to overcome are substan-
tial, we believe bespoke tools could one day improve devel-
opers’ ability to use tools effectively.

Acknowledgment

This material is based upon work supported by the Na-
tional Science Foundation under grant numbers 1217700 and
DGE-0946818.

8. REFERENCES

[1] E. Murphy-Hill, R. Jiresal, and G. C. Murphy,
“Improving software developers’ fluency by
recommending development environment commands,”
in FSE, 2012, pp. 1-11.

[2] S. Perez De Rosso and D. Jackson, “What’s wrong
with git?: a conceptual design analysis,” in Onward!,
2013, pp. 37-52.

[3] T. Grossman, G. Fitzmaurice, and R. Attar, “A
survey of software learnability: metrics, methodologies
and guidelines,” in CHI, 2009, pp. 649-658.

[4] T. Fritz, J. Ou, G. C. Murphy, and E. Murphy-Hill,
“A degree-of-knowledge model to capture source code
familiarity,” in ICSE, 2010, pp. 385-394.

[5] J. Stylos, A. Faulring, Z. Yang, and B. A. Myers,
“Improving API documentation using API usage
information,” in VL/HCC, 2009, pp. 119-126.

[6] F. Servant and J. A. Jones, “Whosefault: Automatic
developer-to-fault assignment through fault
localization,” in ICSE, 2012, pp. 36—46.

[7] T. Murray, “Authoring intelligent tutoring systems:
An analysis of the state of the art,” IJAIED, vol. 10,
pp. 98-129, 1999.

[8] D. Benyon, “Accommodating individual differences
through an adaptive user interface,” Human Factors in
Information Technology, vol. 10, pp. 149-149, 1993.

[9] Y. Zou, M. Lerner, A. Leung, S. Morisson, and
M. Wringe, “Adapting the user interface of integrated
development environments (IDEs) for novice users,”
JOT, vol. 7, no. 7, pp. 55-74, 2008.

[10] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix,
and Y. Zhou, “Evaluating static analysis defect
warnings on production software,” in PASTE, 2007,
pp. 1-8.

[11] B. Johnson, Y. Song, E. Murphy-Hill, and
R. Bowdidge, “Why don’t software developers use
static analysis tools to find bugs?” in ICSE, 2013, pp.
672-681.

[12] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin,

D. Zhang, and T. Xie, “Where do developers log? an
empirical study on logging practices in industry,” in
ICSE, 2014, pp. 24-33.

[13] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and
D. Zhang, “Learning to log: Helping developers make
informed logging decisions,” Supp. to ICSE, pp.
452-461, 2015.

[14] J. J. Canas, M. T. Bajo, and P. Gonzalvo, “Mental
models and computer programming,” IJHCS, vol. 40,
no. 5, pp. 795-811, 1994.

