
Is Programming Knowledge Related To Age? 
An Exploration of Stack Overflow 

Patrick Morrison and Emerson Murphy-Hill 
Computer Science 

North Carolina State University 
Raleigh, NC 

{pjmorris, emurph3}@ncsu.com 
 
 

Abstract— Becoming an expert at programming is thought to 
take an estimated 10,000 hours of deliberate practice1. But what 
happens after that?  Do programming experts continue to 
develop, do they plateau, or is there a decline at some point? A 
diversity of opinion exists on this matter, but many seem to think 
that aging brings a decline in adoption and absorption of new 
programming knowledge.  We develop several research questions 
on this theme, and draw on data from StackOverflow to address 
these questions. The goal of this research is to support career 
planning and staff development for programmers by identifying 
age-related trends in StackOverflow data. We observe that 
programmer reputation scores increase relative to age well into 
the 50’s, that programmers in their 30’s tend to focus on fewer 
areas relative to those younger or older in age, and that there is 
not a strong correlation between age and scores in specific 
knowledge areas. 

Keywords— Stack Overflow, aging, Social Media, 
Programming Knowledge, Mining, Software Repositories 

I. INTRODUCTION 
Demand for software continues to increase, and demand for 

programmers shows no sign of flagging. As many existing 
initiatives consider how to draw more people in to 
programming, we turn our attention to retaining those already 
in the field. There is a diversity of opinion on the role of age in 
programming performance.  Comments from a recent thread2 
on the Stack Exchange programmers discussion website 
illustrate this: 

 

"We know that older people have more experience and 
better judgment, but younger people seem more likely to 
have used specific technologies we're using, and we like 
people who can hit the ground running." 
 

"There's no inherent "Too Old," just perceptions on the part 
of the interviewers." 

 

“Basically it says that the Valley prefers younger 
candidates who will put in allnighters for lower wages, and 
advocates that experienced programmers move into 
management positions after they hit a certain age.” 
We cannot directly assess programming performance, but 

we can explore programming knowledge. Stack Overflow 
                                                             

1 http://norvig.com/21-days.html 
2 http://programmers.stackexchange.com/questions/370/how-
old-is-too-old 

(SO)3 is a programming discussion website based on questions 
and answers about programming that are provided by the 
online community using the site.  As of February 2013, Stack 
Overflow has over 1.6 million registered users and 4.5 million 
questions.  Registration is not required to use the site, so it is 
likely that many more users of the site exist than are indicated. 
SO provides access to its underlying data through online 
queries4, and through various forms of data export files. 

Over 300,000 SO users have specified their age, which 
suggests to us that it might prove a suitable candidate for 
exploring questions regarding age and programming.  

In this paper, we use SO data to explore the relationship 
between aging and programming knowledge.  We theorize that 
age has a positive effect on quality and breadth of 
programming knowledge, at least up to some point.  We also 
address to what degree older programmers acquire knowledge 
about newer technologies. 

We translate our theory in to several research questions: 
• RQ1: Does age have a positive effect on programming 

knowledge? 
• RQ2: Do older programmers possess a wider variety of 

technologies and skills? 
• RQ3: To what degree do older programmers learn new 

technologies? 

II. AGING AND EXPERTISE 
Research on the effects of age on cognitive ability suggests 

that there are tradeoffs in the strengths available over time, 
among them ‘fluid’ and ‘crystallized’ intelligence, where 
‘fluid’ intelligence (Gf) is indicative of the ability to identify 
complex relations and make inferences based on them, while 
‘crystallized’ intelligence (Gc) ‘reflects experience, breadth of 
knowledge, comprehension, judgment, and wisdom’ [1].  
Several models exist for how fluid and crystallized intelligence 
change over time, typically featuring increases in both during 
early life, and declines in fluid intelligence later in life.  
Understanding how these factors play out for programmers 
could assist in staff development and training, resource 
allocation and individual career planning, if relevant data can 
be acquired. 

                                                             
3 http://stackoverflow.com/ 
4 http://data.stackexchange.com/stackoverflow/queries 



III. DATA COLLECTION AND ANALYSIS 
We initially explored the SO data via downloading the 2013 

MSR Mining challenge PostgreSQL data dump [2]. We then 
built equivalent SQL queries to extract data from the live site. 
The overall user population of SO is 1694981 programmers, 
with an average age of 30.3, st. dev. 8.2.  In order to emphasize 
the evaluation of knowledge over time, we based our collection 
and analysis sample of programmers to study on the following 
criteria: 

• Users aged 15 to 70, forming a ‘working age’ interval, 
and excluding outlier age values like 99, and Null. 

• Users who answered questions in 2012. SO ‘Posts’, 
which may be questions or answers, are assigned a 
creation date, allowing each post to be associated with 
a year. SO has roughly doubled in use and data 
quantity annually since its introduction in 2008, with 
2012 having the greatest quantity of data. Further, we 
wanted to avoid rolling more than a single year’s worth 
of data in to a comparison based on age. Finally, we 
selected users who had answered questions out of a 
belief that answers are more reflective of programming 
knowledge than questions.  It is possible to ask a good 
question that cannot be answered, but it seems less 
likely to have a high-scoring answer that is not 
understood or wrong. 

• Reputation between 2 and 100,000.  SO calculates a 
‘reputation’ value for each user5, reflecting site 
familiarity, subject expertise and peer respect. For the 
purposes of our analysis, we treat SO reputation as a 
proxy for programming knowledge.  While neither 
actual on the job performance, nor a ‘work sample’ 
test, the ability to answer questions about 
programming is frequently used in hiring interviews 
for programmer positions.  We eliminated 1, which is 
the default reputation assigned at user creation, and 
dropped reputations over 100,000 as outliers.  

 
The resulting sample contains 84,284 users, with a mean age of 
29.02, st. dev. 7.0, and a mean reputation of 1073.9, st.dev. 
3975.2.  Fig. 1 presents a breakdown of user count and 
reputation by age group for the sample.  

In the figures we present in this paper, all regression lines 
are plotted using LOESS smoothing, which uses ‘local 
regression’ to model and plot a smoothed line based on 
response and predictor variable values [3].  We have not 
proposed or developed statistical models for the processes that 
may be present, and so the smoothing lines are offered as 
suggestions rather than as attempts to model or predict.  The 
shade area surrounding the line indicates the confidence 
interval calculated by the smoothing algorithm. 

Over the course of this investigation, we used PostgreSQL, 
The R Programming Language, Microsoft SQL Server and 
Excel and the facilities provided by SO and the 

                                                             
5 http://meta.stackoverflow.com/questions/7237/how-does-
reputation-work 

StackExchange web site network. R packages used include 
ggplot2 and reshape.   

IV. RESEARCH METHODOLOGY AND RESULTS 

A.  Does age have a positive effect on programming 
knowledge? 
As discussed above, we treat reputation as a proxy for 

programming knowledge.  We queried the SO data query site 
according to the criteria specified above, and collected the 
number of programmers, total reputation, and total number of 
SO membership months for each age in the range 10 to 70. We 
normalized total reputation by person months in order to 
correct for length of membership on SO. We calculate 
‘membership months’ as the number of months between the usr 
creation date and the day the query was run.  As shown in Fig. 
1, the number of programmers is roughly normally distributed 
around age 29, though skewed right. Reputation  (Fig. 2) is 
roughly linearly increasing from age 10 in to the 50’s.  We ran 
a linear regression (R, lm(total_reputation/person_months ~ 
age), which indicated a positive slope of .52 total reputation 
points/person month per year, p.value .0029 (Pr(>.05), !! 
= .08. This suggests that there is a positive relationship between 
age and reputation on SO. 

B. Do older programmers possess a wider variety of 
technologies and skills? 
We theorize that programmers acquire technology and skill 

knowledge as they progress in their careers. 
SO provides a 'tag' feature, allowing each question asked to 

be annotated with one or more terms indicating the subject 
matter of the question, e.g. 'javascript', 'c', 'algorithm',  'design-
patterns'.  We can trace users to the questions they ask and 
answer, and to the tags associated with each question. We 

Figure 1: SO user count by age 



count the references to each tag, grouped by age and normalize 
by number of programmers reporting that age.  We would 
expect a plot of this quantity to increase in some proportion to 
age.  

We built an SQL query counting unique tags used by each 
age, and normalized this total by the number of programmers 
of that age. A plot of the resulting data, Fig. 3, indicates that 
our expectations were incorrect; there is initially a decline in 
the mean number of tags per programmer, bottoming around 
age 30, followed by an increase in the 40’s and 50’s and 
dispersion in the 60’s. 

C. To what degree do older programmers learn new 
technologies? 
It appears from the preceding analysis that programmers 

continue to acquire knowledge over time.  We conjecture that 
they acquire knowledge in new technologies, and that this can 
be measured by considering answer scores.  Each answer is 
assigned a score, based on the number of votes for or against 

the answer.  If older programmers learn newer technologies, we 
might expect them to have similar or higher answer scores to 
younger programmers for these technologies.  In order to test 
this notion, we group programmers as ‘older’ and ‘younger’ 
programmers and apply the one-sided Welch Two-Sample t-
test for a set of new technologies. We take older programmers 
to be those aged greater than one standard deviation above the 
mean (29+7 = 36), 37 and above.  The null hypothesis is that 
older programmers have the same scores as younger 
programmers for new technologies. If older programmers have 
statistically significant low t-values, it would indicate that they 
do not learn new technologies.  

To avoid a temptation to pick examples showing strong 
age-related performance, we pre-selected the following tags as 

representative of technologies released within the last 5-10 
years: clojure, django, git, ios, jquery, linq, mongodb, ruby-on-
rails, silverlight and windows-phone-7. 

We built an SQL query to collect all answers for each of 
these tags according to the user and answer criteria described 
previously 

 We then ran t-tests comparing older and younger 
programmers for each tag. Table 1 presents the results for our 
pre-selected tags. 

There are two tags, ‘ios’ and ‘windows-phone-7’, for which 
there is a statistically significant deviation from the null 
hypothesis.  These may indicate places where knowledge of 
older technologies, e.g. the 20-year old Objective-C foundation 
of ‘ios’, gives older programmers an advantage. Given the 
strength of the relationship between age and the selected new 
technologies is relatively weak, we do not have strong evidence 
against older programmers learning new technologies.  It 
appears that older programmers do learn new technologies.  

V. LIMITATIONS 
Does the SO population represent the programmer 

population?  US statistics on programmer employment [4] 
suggest that the age distribution of professional programmers 
skews older than the user distribution of SO.  It is possible that 
SO represents a kind of ‘early adopter’ rather than the 
programming profession. This also has implications for the age 
data; perhaps younger programmers join as a matter of course, 
while the older developers that join may only do so if they 
know themselves to be especially knowledgeable.  Determining 
the relationship between the SO user base and the programmer 
population is necessary before inferences can be made for 
prediction, planning or other purposes. 

Does SO reputation measure programming knowledge? 
High reputation scores may reflect efforts in resume building 
and self-promotion as well as programming knowledge.  It is 

Figure 2: SO average reputation by age 

Figure 3: Unique tags by age 



possible that the causation between age and programming 
knowledge exhibited in the data is because higher-knowledge 
individuals choose to stay active and engaged later in life, 
rather than because individuals gain knowledge over time, a 
point made by Hultsch et al [5].  

  Does measuring programming knowledge say anything 
about programming ability? As previously discussed, 
answering knowledge questions has been used to inform 
programmer hiring decisions almost universally, but the results 
of depending only on technical interviews are not always 
satisfactory. High SO question and reputation scores may 
indicate a talent for explanation and for clever writing more 
than an ability to translate knowledge in to code. 

We are not convinced that our means for answering RQ3 is 
fair, although we do not yet have a better procedure.  
Restricting the population to only those users who answer 
questions, measuring scores and normalizing by the number of 
people answering questions all reduce the amount of support 
available as evidence for use of new technologies by older 
programmers, and weaker statistical measures may suit for 
establishing use, e.g. simple counts of the number of different 
ages of users asking and answering questions about a given 
technology/tag.    

VI. CONCLUSIONS AND FUTURE WORK 
We have shown a correlation between age and SO 

reputation, which may indicate that programming knowledge 
can be maintained at a high level in to a person’s 50’s and 60’s.  
It appears that older SO users not only can acquire additional 
knowledge, but that they acquire knowledge of new 
technologies, in the case of the technologies we have 
examined.  Further investigation is needed to determine under 
what conditions this occurs. 

This has implications for staff development and career 
planning.  If the trend shown in the data of programmers 
leaving the profession before they have fully developed were 
present in the software development industry, slowing it would 
produce an effective increase in the number of trained 
programmers available for developing software.  Studying and 
acting on this information at the organizational level might call 

for new perspectives on the part of boards, executives, 
management and human resources in recruiting and promotion.  
At the individual level, awareness of high performance on the 
part of others can inspire efforts to continue or to improve.      

Research into the nature of the SO population and its 
relation to the programmer population at large needs to be 
conducted, in order to support inferences to the programmer 
population. Further investigation is needed of how SO 
measures, such as user reputation and question scores translate 
in to programming knowledge and ability. Research on the 
relationship between age and knowledge on SO should be 
related to the existing literatures on aging and on the 
development of expertise.    

Ultimately, all information about personal development 
should translate in to individual questions, such as ‘How do I 
improve?’, ‘What do I need to learn?’, and ‘Who can help me 
learn it?’.  SO already offers a rich resource in this regard, and 
many opportunities exist to improve its use through research.  

ACKNOWLEDGEMENTS 
This paper and its authors owe much to discussions with 

John Slankas, John Majikes, Jen Davidson, and the entire CSC 
791 class of Spring 2013. 

REFERENCES 
[1] F. I. M. Craik and E. Bialystok, “Cognition through the lifespan: 

mechanisms of change,” Trends in Cognitive Sciences, vol. 10, 
no. 3, pp. 131 – 138, 2006. 

[2] A. Bacchelli, “Mining Challenge 2013: Stack Overflow,” in The 
10th Working Conference on Mining Software Repositories. 

[3] W.S. Cleveland and C.L. Loader, “Smoothing by Local 
Regression: Principles and Methods.,” in Statistical Theory and 
Computational Aspects of Smoothing, W. Hardle and M. G. 
Schmick, Eds. New York: Springer, 1996, pp. 10–49. 

[4] Occupational Outlook Handbook, ch. Computer Software 
Engineers and Computer Programmers. US Department of 
Labor, 2011. 

[5] D.F. Hultsch, C. Hertzog, B.J. Small, and R.A. Dixon, “Use it or 
lose it: engaged lifestyle as a buffer of cognitive decline in 
aging?,” Psychology of Aging, vol. 14, no. 2, pp. 245–63, Jun. 
1999. 

  

Table1: Ten 'new' technologies and younger/older statistical comparisons 

 


