Measurement-Based Methods for Model Reduction, Identification, and Distributed Optimization of Power Systems

Seyed Behzad Nabavi

Department of Electrical and Computer Engineering
North Carolina State University

24/4/2015
Part I– Identification of Dynamic Reduced-Order Models of Power Systems
Introduction

- Mathematical modeling of dynamic equivalents of large-scale electric power systems has seen some 40 years of long and rich research history.

- Chow and Kokotovic established the relationship between the slow coherency and weak connections using singular perturbation theory.

- Slow coherency arises from the slower inter-area modes. These interarea modes, if not properly damped, lead to system separation and extensive loss of load.

Figure: R. Podemore: Coherency in Power Systems
Model-based Dynamic Equivalencing

- Recent evidences of blackouts have shown the discrepancy between the offline models and the response of the system.
Model-based Dynamic Equivalencing

- Dynamic equivalencing has seen 40 years of active research:
 - linear modal decomposition [Undrill, 71]
 - circuit-theoretic approaches [de Mello, 75]
 - machine aggregation [Germond, 78]
 - enumerative clustering algorithms [Zaborsky, 82]
 - software programs such as DYNEQ and DYNRED [Price, 95]

- Model based methods:
 - need the exact knowledge of the entire power system model,
 - are computationally challenging,
 - are based on idealistic assumption about system structure and clustering.
Measurement-based Dynamic Equivalencing

- PMUs provide high-resolution GPS-synchronized three-phase measurements of voltage, current, phasor, and frequency.

- System operators are, therefore, inclining more towards online models constructed from PMU (Phasor Measurement Unit) measurements.

- We next propose two algorithms to identify these dynamic equivalent models using PMU measurements:
 * Identification of the equivalent linear models
 * Identification of the equivalent nonlinear DAE models
Power System Swing Equation

Nonlinear Electromechanical Model:

\[
\dot{\delta}_i(t) = \omega_s(\omega_i(t) - 1),
\]
\[
M_i \dot{\omega}_i(t) = P_{m_i} - P_{e_i}(t) - D_i(\omega_i(t) - 1),
\]
\[
P_{e_k}(t) + \sum_{l \in \mathcal{N}_k} P_{kl}(t) - P_{L_k}(t) = 0,
Q_{e_k}(t) + \sum_{l \in \mathcal{N}_k} Q_{kl}(t) - Q_{L_k}(t) = 0
\]

Linearized Kron-Reduced Model (around \((\delta_{i0}, 1)\)):

\[
\begin{bmatrix}
\Delta \dot{\delta}(t) \\ \Delta \dot{\omega}(t)
\end{bmatrix} =
\begin{bmatrix}
\begin{array}{c|c}
0_{n \times n} & \omega_s I_{n \times n} \\
\hline
M^{-1} L & -M^{-1} D
\end{array}
\end{bmatrix}
\begin{bmatrix}
\Delta \delta(t) \\ \Delta \omega(t)
\end{bmatrix} + B d(t),
\]

where \(\Delta \delta \triangleq [\Delta \delta_1 \ldots \Delta \delta_n]^T\), \(\Delta \omega \triangleq [\Delta \omega_1 \ldots \Delta \omega_n]^T\), \(\Delta \delta, \Delta \omega \in \mathbb{R}^n\),

\[
M = \text{diag}(M_i) \in \mathbb{R}^{n \times n}, \quad D = \text{diag}(D_i) \in \mathbb{R}^{n \times n}, \quad d(t) : \text{unknown disturbance}
\]

\[
[L]_{i,j} = E_i E_j (G_{ij} \cos(\delta_{i0} - \delta_{j0}) - B_{ij} \sin(\delta_{i0} - \delta_{j0})) \quad i \neq j, \quad [L]_{i,i} = -\sum_{k=1}^{n} [L]_{i,k},
\]
Linear Dynamic Equivalent Models

\[
\begin{bmatrix}
\Delta \delta_{1,1} \\
\vdots \\
\Delta \delta_{m,1,1} \\
\Delta \delta_{1,2} \\
\vdots \\
\Delta \delta_{m,2,2} \\
\Delta \delta_{1,r} \\
\vdots \\
\Delta \delta_{m,r,r}
\end{bmatrix} = \mathbf{M}^{-1} \begin{bmatrix}
L_{11} & L_{12} & \cdots & L_{1r} \\
L_{21} & L_{22} & \cdots & L_{2r} \\
\vdots & \vdots & \ddots & \vdots \\
L_{r1} & L_{r2} & \cdots & L_{rr}
\end{bmatrix} \begin{bmatrix}
\Delta \delta_{1,1} \\
\vdots \\
\Delta \delta_{m,1,1} \\
\Delta \delta_{1,2} \\
\vdots \\
\Delta \delta_{m,2,2} \\
\Delta \delta_{1,r} \\
\vdots \\
\Delta \delta_{m,r,r}
\end{bmatrix} = (\mathbf{M}^*)^{-1} \begin{bmatrix}
[L^*]_{1,1} & [L^*]_{1,2} & \cdots & [L^*]_{1,r} \\
[L^*]_{2,1} & [L^*]_{2,2} & \cdots & [L^*]_{2,r} \\
\vdots & \vdots & \ddots & \vdots \\
[L^*]_{r,1} & [L^*]_{r,2} & \cdots & [L^*]_{r,r}
\end{bmatrix} \begin{bmatrix}
\Delta \delta_{1} \\
\vdots \\
\Delta \delta_{r}
\end{bmatrix}
\]

Aggregated Transmission Network Graph
Identification of Linear Equivalent Models

The reduced-order model:
\[
\begin{bmatrix}
\Delta \delta^S(t) \\
\Delta \omega^S(t)
\end{bmatrix} = \begin{bmatrix}
0_{r \times r} & \omega_s I_{r \times r} \\
(M^s)^{-1} L^s & -(M^s)^{-1} D^s
\end{bmatrix} \begin{bmatrix}
\Delta \delta^S(t) \\
\Delta \omega^S(t)
\end{bmatrix} + B^s d(t).
\]

Assumptions:
- The area partitioning for our system is known apriori.
- There is at least one PMU at a generator bus in each area \(S\).
- \(A^s\) and \(B^s\) are a controllable pair.

Objective:
- Finding the equivalent linear model of a power system from \(y_i(t), i \in S\):
 \[
y_i(t) = \{\tilde{V}_i(t), \tilde{l}_{i,j}(t)\}, \ i \in S, \ j \in N_i.
\]

Proposed Identification Steps:
- Extract \(\Delta \delta_k^S(t)\) for each area \(k\) from \(y_i(t), i \in S\).
- Identification of \(A^s\).
Extraction of $\Delta \delta_k^s(t)$ for Each Area k

- **Step 1:** Extract $\Delta \delta_i(t)$ from $y_i(t)$:

 \[
 E_i(t) \angle \delta_i(t) = jx_d' \angle \phi_i(t) + V_i(t) \angle \theta_i(t)
 \]

 $\Rightarrow \hat{\delta}_i(t) = \angle (jx_d' \angle \phi_i(t) + V_i(t) \angle \theta_i(t))$

 $\Delta \hat{\delta}_i(t) = \hat{\delta}_i(t) - \hat{\delta}_i(t_0)$.

- **Step 2:** Extract $\Delta \hat{\delta}_k^s(t)$ from $\Delta \hat{\delta}_{i,k}(t)$, (generator i belonging to area k):

 \[
 \Delta \delta_{i,k}(t) = \Delta \delta_{i,k}^0(t) + \sum_{l=1}^{r-1} \rho_{il} e^{(-\sigma_l+j\Omega_l)t} + \rho_{il}^* e^{(-\sigma_l-j\Omega_l)t} + \sum_{l=r}^{n-1} \rho_{il} e^{(-\sigma_l+j\Omega_l)t} + \rho_{il}^* e^{(-\sigma_l-j\Omega_l)t},
 \]

 - $\Delta \delta_{i,k}^s(t)$, inter-area or slow modes
 - $\Delta \delta_{i,k}^f(t)$, intra-area or fast modes

 Use a modal decomposition technique such as Prony to decompose $\Delta \delta_{i,k}(t)$

 Form $\Delta \delta_{i,k}^s(t)$ by retaining only the modes in [0.1, 1] Hz.
Extraction of $\Delta \delta_k^s(t)$ for Each Area k

- We truncate $\Delta \delta_{i,k}(t)$ to extract $\Delta \delta_{i,k}^s(t)$.
- From the coherency assumption
 \[
 \Delta \delta_{1,k}^s(t) \approx \Delta \delta_{2,k}^s(t) \approx \cdots \approx \Delta \delta_{m_k,k}^s(t)
 \]
- We set $\Delta \delta_k^s(t) = \Delta \delta_{i,k}^s(t)$.
Identification of A^s

- The reduced-order model:

$$\begin{bmatrix} \Delta \dot{\delta}^s(t) \\ \Delta \dot{\omega}^s(t) \end{bmatrix} = \begin{bmatrix} 0_{r \times r} & \omega_s I_{r \times r} \\ (M^s)^{-1} L^s & -(M^s)^{-1} D^s \end{bmatrix} \begin{bmatrix} \Delta \delta^s(t) \\ \Delta \omega^s(t) \end{bmatrix} + A^s B^s d(t).$$

- Solve the following NLS problem (assuming $d(t)$ is a momentary perturbation at $t = t_0$):

$$\min_{A^s} \int_{t_1}^{t_m} \| \begin{bmatrix} \Delta \delta^s(t, A^s) \\ \Delta \omega^s(t, A^s) \end{bmatrix} - \begin{bmatrix} \Delta \hat{\delta}^s(t) \\ \Delta \hat{\omega}^s(t) \end{bmatrix} \|_2^2 \, dt$$

where,

$$\begin{bmatrix} \Delta \delta^s(t, A^s) \\ \Delta \omega^s(t, A^s) \end{bmatrix} = \exp(A^s(t - t_1)) \begin{bmatrix} \Delta \hat{\delta}^s(t_1) \\ \Delta \hat{\omega}^s(t_1) \end{bmatrix},$$

- $\Delta \hat{\omega}^s(t)$ is calculated from the numerical differentiation of $\Delta \hat{\delta}^s(t)$ normalized by ω_s.
Identifiability Analysis of A^s

- Lemma: [Bellman and Astrom-70] Consider the system

\[\dot{x} = Ax + Bu, \quad y = Cx \]

If the matrix C is full column-rank and the system is controllable, then A and B can be determined uniquely from input output data.

- In our identification problem, we assume (A^s, B^s) to be a controllable pair, and $C = I_{2n}$ (full column-rank), thus A^s is identifiable.

- More results on identifiability analysis will be provided in Part III (joint work with Dr. P. P. Khargonekar).
A Case Study– NPCC 48 Machine Model
A Case Study- NPCC 48 Machine Model

- Defining the error:

 \[J_a(k) = \frac{1}{t_m - t_1} \int_{t_1}^{t_m} |\Delta \delta_{k,\text{reduced}}(t) - \Delta \delta_{k,\text{actual}}(t)| \, dt. \]

- \(\sum_k J_a(k) = 10.2232(\text{deg}) \) for the model-based method, and \(\sum_k J_a(k) = 4.6017(\text{deg}) \) for our measurement-based method.
Identification of the Equivalent DAE Models

- The linear equivalent models are in the Kron’s form.
- This model is not a very suitable choice for:
 1. Identification of the individual equivalent parameters such as inertia \((M_i) \)
 2. Shunt controller design purposes
 3. Describing the system behavior for large disturbances (transient stability)

\[
\dot{\delta}_i(t) = \omega_s(\omega_i(t) - 1), \\
M_i\ddot{\delta}_i(t) = P_{mi} - P_{ei} - D_i(\omega_i(t) - 1), \\
\dot{\omega}_i^s(t) = \omega_i^s(t) - \omega_s, \\
M_i^s\ddot{\omega}_i^s(t) = P_{mi}^s - P_{ei}^s - D_i^s(\omega_i^s(t) - 1),
\]
Identification of the Equivalent DAE Models

Assumptions:
- The area partitioning for our system is known apriori.
- The boundary buses of all areas are equipped with PMUs (denoted by S).

Objective:
- Finding the equivalent DAE model of a power system from $y_i(t)\ i \in S$:

$$y_i(t) = \{\tilde{V}_i(t), \tilde{I}_{i,j}(t)\}, \ i \in S, \ j \in \mathcal{N}_i.$$

Proposed Identification Steps:
- Finding the equivalent pilot bus voltages and currents.
- Estimating the equivalent area impedances.
- Estimating the equivalent generator parameters.
- Estimating the inter-area impedances.
Equivalent Pilot Bus Voltage and Current

Step 1: Use y_k to calculate $\tilde{V}_{pk}(t)$ and $\tilde{I}_{pk}(t)$

$$\tilde{I}_{pk}(t) \triangleq I_{pk}(t)\angle \phi_{pk}(t) = \sum_{i \in B_k} \tilde{i}_i(t), \quad \tilde{V}_{pk}(t) \triangleq V_{pk}(t)\angle \theta_{pk}(t) = \frac{\sum_{i \in B_k} \tilde{V}_i(t)\tilde{I}_i^*(t)}{\tilde{I}_{pk}^*(t)}$$
Equivalent Pilot Bus Voltage and Current

- **Step 2:** Construction of $\tilde{V}_{p_k}^s(t)$ and $\tilde{I}_{p_k}^s(t)$
 - The modal decomposition of $\delta_i^s(t)$:
 \[
 \delta_i^s(t) \approx \sum_{l=1}^{2r} \rho_{jl} e^{\lambda_l t} + \sum_{k=1}^{2r} \sum_{l=1}^{2r} \rho'_{jkl} e^{(\lambda_l + \lambda_k) t} \Rightarrow V_{p_k}^s(t) = \sum_{l=1}^{2r} \alpha_{lk} e^{\lambda_l t} + \sum_{i=1}^{2r} \sum_{j=1}^{2r} \alpha'_{ijk} e^{(\lambda_i + \lambda_j) t},
 \]
 - Use Prony to decompose $V_{p_k}^s(t)$:
 \[
 V_{p_k}^s(t) = \sum_{l=1}^{N} \beta_{lk} e^{\gamma_l t}
 \]
 - Retain only those modal components within the [0.1,1] Hz. The sum of these selected modal components are classified as $V_{p_k}^s(t)$.
 - Apply the same procedure to extract $\theta_{p_k}^s(t)$, $I_{p_k}^s(t)$, and $\phi_{p_k}^s(t)$.
Equivalent Area Impedance

- KVL in the equivalent circuit:

\[E_k^s(t) \angle \delta_k^s(t) = (r_k^s + jx_{d_k}^s)\tilde{I}_{p_k}^s(t) + \tilde{V}_{p_k}^s(t). \]

- For any time instance:

\[\Phi_0 \triangleq |(r_k^s + jx_{d_k}^s)\hat{I}_{p_k}^s(t_0) \angle \hat{\phi}_{p_k}^s(t_0)) + \hat{V}_{p_k}^s(t_0) \angle \hat{\theta}_{p_k}^s(t_0)|, \]

\[\vdots \]

\[\Phi_m \triangleq |(r_k^s + jx_{d_k}^s)\hat{I}_{p_k}^s(t_m) \angle \hat{\phi}_{p_k}^s(t_m)) + \hat{V}_{p_k}^s(t_m) \angle \hat{\theta}_{p_k}^s(t_m)|. \]

- The estimation of \(r_k^s \) and \(x_{d_k}^s \) can be posed as the following NLS problem:

\[\min_{x_{d_k}^s, r_k^s} \text{var}(\Phi_0, \ldots, \Phi_m), \]
Estimating the equivalent generator parameters

- Solve the following NLS problem

\[
\min_{M_k^s, D_k^s, P_{m_k}^s} \int_{t_0}^{t_m} |\delta_k^s(t) - \delta_k^s(t, M_k^s, D_k^s, P_{m_k}^s)|^2 dt,
\]

where

\[
\dot{\delta}_k^s(t) = \omega_k^s(t) - \omega_s,
\]

\[
M_k^s \dot{\omega}_k^s(t) = P_{m_k}^s - P_{e_k}^s - D_i^s(\omega_k^s(t) - 1),
\]

\[
\delta_k^s(t) = \delta_k^s(t_0), \quad \omega_k^s(t) = \omega_k^s(t_0), \quad P_{e_k}^s(t) = \text{Re}(\hat{E}_k^s(t) \angle \delta_k^s(t) \tilde{I}_{p_k}^s(t))
\]
Estimating the inter-area impedances

- KCL on equivalent pilot buses:
\[
Y^s \left[\tilde{V}^s(t_0) | \cdots | \tilde{V}^s(t_m) \right] = \left[\tilde{I}^s(t_0) | \cdots | \tilde{I}^s(t_m) \right],
\]

- Estimate \(Y^s \) by solving:
\[
\min_{Y^s} \| Y^s \tilde{V}^s - \tilde{I}^s \|^2_F,
\]
\[
s.t. \quad Y^s = (Y^s)^T
\]
A Case Study– IEEE 39 Bus Model

Area 1

Area 2

Area 3

Area 4

$H_1' = 510.6557$
$D_1' = 0.3227M_1'$

$H_2' = 82.3485$
$D_2' = 0.4417M_2'$

$H_3' = 267.2335$
$D_3' = 0$

$H_4' = 106.6757$
$D_4' = 1.6541M_4'$

Model Reduction, Identification, and Distributed Optimization of Power Systems
© 2015 by S. Nabavi
Future Work

- Investigating the utility of the reduced order models for shunt controller design purposes (such as Static Var Compensator (SVC)).

\[
G_k^s \quad \rightarrow \quad \tilde{V}_{pk}^s(t) \quad \rightarrow \quad \text{SVC} \\
\tilde{I}_{pk}^s(t) \quad \rightarrow \quad \text{SVC} \quad \rightarrow \quad \text{Coherent Area } k
\]
Part II– Distributed Optimization Algorithms for Wide-Area Oscillation Monitoring in Power Systems
Introduction

- In Part I, we describe methods to identify the equivalent models from PMU. In Part II, we use PMUs to identify the (inter-area) oscillation modes from PMUs in a distributed way.

- Majority of modal estimation algorithms are centralized such as: Eigenvalue Realization Algorithm (ERA) [Sanchez-Gasca-99], Prony analysis [Hauer-90], Robust Least Squares [Zhuo-08], and Hilbert-Huang transform [Messina-06].

- As the number of PMUs scales up into the thousands, the current state-of-the-art centralized architectures will no longer be sustainable.
Wide-Area Oscillation Monitoring

Using PMU measurements to estimate the frequency, damping factor and residue of the different electro-mechanical oscillation modes
Wide-Area Oscillation Monitoring

Using PMU measurements to estimate the frequency, damping factor and residue of the different electro-mechanical oscillation modes
Oscillation Monitoring

\[
f_0 + f_1 z^{-1} + f_2 z^{-2} + \cdots + f_n z^{-n} \over 1 + a_1 z^{-1} + a_2 z^{-2} + \cdots + a_n z^{-n} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \cdots + b_n z^{-n}}{1 + a_1 z^{-1} + a_2 z^{-2} + \cdots + a_n z^{-n}}
\]
Centralized Prony Method

Step 1. Find a_1 through a_{2n}

\[
\begin{bmatrix}
\Delta \theta_i(2n) \\
\Delta \theta_i(2n + 1) \\
\vdots \\
\Delta \theta_i(2n + \ell)
\end{bmatrix}
\begin{bmatrix}
c_i
\end{bmatrix}
=
\begin{bmatrix}
\Delta \theta_i(2n - 1) & \cdots & \Delta \theta_i(0) \\
\Delta \theta_i(2n) & \cdots & \Delta \theta_i(1) \\
\vdots & \ddots & \vdots \\
\Delta \theta_i(2n + \ell - 1) & \cdots & \Delta \theta_i(\ell)
\end{bmatrix}
\begin{bmatrix}
-a_1 \\
a_2 \\
\vdots \\
-a_{2n}
\end{bmatrix}
\]

Finding the global a using all available measurements by solving:

\[
\begin{bmatrix}
c_1 \\
\vdots \\
c_p
\end{bmatrix}
=
\begin{bmatrix}
H_1 \\
\vdots \\
H_p
\end{bmatrix}
\begin{bmatrix}
a
\end{bmatrix}
\]

Solve this using Batch Least Squares - Centralized Prony Method

Step 2. Find the eigenvalues of A (i.e., $-\sigma_i \pm j\Omega_i$) by
- Finding the roots of discrete-time transfer function (z_1 through z_{2n})
- Converting them from discrete-time to continuous-time
Centralized Prony Method

\[\theta_i \rightarrow (H_i, c_i), \quad i = 1, \ldots, p \]

\[\Rightarrow a = \arg \min_{a} \frac{1}{2} \| \begin{bmatrix} H_1 \\ \vdots \\ H_p \end{bmatrix} a - \begin{bmatrix} c_1 \\ \vdots \\ c_p \end{bmatrix} \|_2^2 \]
Distributing the Prony Method

N Computational Areas:

\(\Delta \theta_{j,i} \): PMU \(i \) in area \(j \)

\(\Delta \theta_{j,i} \rightarrow H_{j,i}, \ c_{j,i} \)

\[\hat{H}_j \triangleq \begin{bmatrix} H_{j,1}^T & H_{j,2}^T & \cdots & H_{j,N_j}^T \end{bmatrix}^T,\]

\[\hat{c}_j \triangleq \begin{bmatrix} c_{j,1}^T & c_{j,2}^T & \cdots & c_{j,N_j}^T \end{bmatrix}^T\]

\(N_j \): is the total number of PMUs in Area \(j \),

Global Consensus Problem:

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{N} \frac{1}{2} \| \hat{H}_i a_i - \hat{c}_i \|_2^2 \\
\text{subject to} & \quad a_i - z = 0, \text{ for } i = 1, \ldots, N
\end{align*}
\]

Use Alternating Direction Method of Multipliers (ADMM) to solve it
Distributing the Prony Method

Three Distributed Cyber-Physical Architectures (Using ADMM):

- Standard ADMM
 - Asynchronous ADMM
- Hierarchical ADMM
- Distributed ADMM
Distributed Prony using Standard ADMM (S-ADMM)

\[
\begin{align*}
\text{minimize} & \quad \sum_{j=1}^{N} \frac{1}{2} \| \hat{H}_j a_j - \hat{c}_j \|^2 \\
\text{subject to} & \quad a_j - z = 0, \text{ for } j = 1, \ldots, N
\end{align*}
\]

Augmented Lagrangian:

\[
L_\rho = \sum_{j=1}^{N} \left(\frac{1}{2} \| \hat{H}_j a_j - \hat{c}_j \|^2 + w_j^T (a_j - z) + \frac{\rho}{2} \| a_j - z \|^2 \right),
\]

\(a_j, z\): the primal variable
\(w_j\): the dual variable
\(\rho\): penalty factor
Distributed Prony using S-ADMM

Iteration k

- Each PDC updates a_j locally

 $a_j^{k+1} = ((H_j^k)^T H_j^k + \rho I)^{-1} ((H_j^k)^T c_j^k - w_j^k + \rho z^k)$
Distributed Prony using S-ADMM

Iteration k

- Each PDC updates a_j locally
 \[a_j^{k+1} = ((H_j^k)^TH_j^k + \rho I)^{-1}((H_j^k)^Tc_j^k - w_j^k + \rho z^k) \]
- PDC j sends a_j^{k+1} to the central PDC.
Distributed Prony using S-ADMM

Iteration k

- Each PDC updates a_j locally

 $$a_j^{k+1} = ((H_j^k)^T H_j^k + \rho l)^{-1} ((H_j^k)^T c_j^k - w_j^k + \rho z^k)$$

- PDC j sends a_j^{k+1} to the central PDC.

- The central PDC receives a_j^{k+1} from all PDCs.
Distributed Prony using S-ADMM

Iteration k

- Each PDC updates a_j locally
 \[a_{j}^{k+1} = ((H_j^k)^T H_j^k + \rho I)^{-1}((H_j^k)^T c_j^k - w_j^k + \rho z_j^k) \]
- PDC j sends a_{j}^{k+1} to the central PDC.
- The central PDC receives a_{j}^{k+1} from all PDCs.
- The central PDC calculates $z_{j}^{k+1} = \frac{1}{N} \sum_{j=1}^{N} a_{j}^{k+1}$.

Supervisory ISO

PDC 1

PDC 2

PDC 3

PDC 4

Estimated Prameters

PMU Measurements
Distributed Prony using S-ADMM

Iteration k

- Each PDC updates a_j locally

 $$a_j^{k+1} = ((H_j^k)^T H_j^k + \rho I)^{-1} ((H_j^k)^T c_j^k - w_j^k + \rho z^k)$$

- PDC j sends a_j^{k+1} to the central PDC.

- The central PDC receives a_j^{k+1} from all PDCs.

- The central PDC calculates $z^{k+1} = \frac{1}{N} \sum_{j=1}^{N} a_j^{k+1}$.

- The central PDC sends z^{k+1} to local PDCs.
Distributed Prony using S-ADMM

Iteration k

- Each PDC updates a_j locally
 \[a_j^{k+1} = ((H_j^k)^T H_j^k + \rho I)^{-1}((H_j^k)^T c_j^k - w_j^k + \rho z^k) \]

- PDC j sends a_j^{k+1} to the central PDC.

- The central PDC receives a_j^{k+1} from all PDCs.

- The central PDC calculates $z_j^{k+1} = \frac{1}{N} \sum_{j=1}^N a_j^{k+1}$.

- The central PDC sends z_j^{k+1} to local PDCs.

- PDC j calculates w_j^{k+1} as
 \[w_j^{k+1} = w_j^k + \rho (a_j^{k+1} - z_j^{k+1}) \]
Distributed Prony using S-ADMM

Iteration k

- Each PDC updates a_j locally
 \[a_j^{k+1} = \left((H_j^k)^T H_j^k + \rho I \right)^{-1} \left((H_j^k)^T c_j^k - w_j^k + \rho z_j^k \right) \]
- PDC j sends a_j^{k+1} to the central PDC.
- The central PDC receives a_j^{k+1} from all PDCs.
- The central PDC calculates $z_j^{k+1} = \frac{1}{N} \sum_{j=1}^N a_j^{k+1}$.
- The central PDC sends z_j^{k+1} to local PDCs.
- PDC j calculates w_j^{k+1} as
 \[w_j^{k+1} = w_j^k + \rho (a_j^{k+1} - z_j^{k+1}) \]

The central PDC and local PDCs find the eigenvalues $-\sigma_i \pm j\Omega_i$ using z_j^k.
Distributed Prony using A-ADMM

Iteration k

- Each PDC updates a_j locally

 $$a_j^{k+1} = (H_j^k)^T H_j^k + \rho I)^{-1} ((H_j^k)^T c_j^k - w_j^k + \rho z^k)$$

- PDC j sends a_j^{k+1} and w_j^k to the central PDC.

- The central PDC receives a_j^{k+1} and w_j^k from S^k, a subset of PDCs.

- The central PDC calculates

 $$z^{k+1} = \frac{1}{N} \sum_{j=1}^{N} a_j^{k+1} + \frac{1}{\rho} w_j^k$$

 $$j \notin S : a_j^{k+1} = a_j^k, w_j^k = w_j^{k-1}$$

- The central PDC sends z^{k+1} to local PDCs.

- PDC j calculates w_j^{k+1} as

 $$w_j^{k+1} = w_j^k + \rho(a_j^{k+1} - z^{k+1}), \quad j \in S^k, \quad w_j^{k+1} = w_j^k, \quad j \notin S^k$$
Distributed Prony using H-ADMM

- Less communication and computation overhead for the central PDC for large number of PDCs.
- The same convergence properties as the S-ADMM.
Distributed Prony using D-ADMM

- Define a communication graph $\mathcal{G}(V, E)$.
- A different version of the original problem defined over \mathcal{G}:
 \[\minimize_{a_1, \ldots, a_N, z} \sum_{j=1}^{N} \frac{1}{2} \left\| \hat{H}_j a_j - \hat{c}_j \right\|^2 \]
 subject to $a_j - a_k = 0$, for $jk \in E(\mathcal{G})$
- Modified Augmented Lagrangian:
 \[
 L^{k}_\rho = \frac{1}{2} \sum_{j=1}^{N} \left(\left\| \hat{H}^k_j a_j - \hat{c}_j^k \right\|^2 + \rho \left(\sum_{v \in P_j} \left\| a^k_{v+1} - a_j - \frac{1}{\rho} w^k_{vj} \right\|^2 + \sum_{v \in S_j} \left\| a_j - a^k_v - \frac{1}{\rho} w^k_{vj} \right\|^2 \right) \right)
 \]
Resilient Distributed Prony using D-ADMM

- One of the challenges of using any distributed computational architecture is ensuring their resiliency to node attacks in the form of data manipulation.
- It is difficult for the ISO to detect a manipulated set of measurement broadcasting from a malicious local PDC.
- The D-ADMM architecture has the advantage that the primal and dual updates are done by local PDCs.
- Let us define the following residual errors:

\[E_j^k \triangleq \| \hat{H}_j a_j^k - \hat{c}_j \|, \]
\[E_{ji}^k \triangleq \| \hat{H}_j a_i^k - \hat{c}_j \|, \forall i \in \mathcal{N}_j \]

- let us consider \(\mathcal{G} \) to be a cycle.
Resilient Distributed Prony using D-ADMM

Each PDC j receives the update of a_i^{k+1} for all $l \in P_j$.
Resilient Distributed Prony using D-ADMM

1. Each PDC j receives the update of a_l^{k+1} for all $l \in P_j$.
2. PDC j updates a_j as $a_j^{k+1} = \arg \min_{a_j} L'_\rho$.
3. PDC j updates all w_{lj} for $l \in P_j$: $w_{lj}^{k+1} = w_{lj}^k - \rho(a_l^{k+1} - a_j^{k+1})$.
Resilient Distributed Prony using D-ADMM

1. Each PDC j receives the update of a_i^{k+1} for all $l \in P_j$.
2. PDC j updates a_j as $a_j^{k+1} = \arg \min_{a_j} L'_\rho$.
3. PDC j updates all w_{lj} for $l \in P_j$: $w_{lj}^{k+1} = w_{lj}^k - \rho(a_i^{k+1} - a_j^{k+1})$.
4. PDC j sends a_j^{k+1} to all $l \in P_j \cup S_j$, and receives a_l^{k+1} from $l \in S_j$.
Resilient Distributed Prony using D-ADMM

1. Each PDC \(j \) receives the update of \(a_i^{k+1} \) for all \(l \in P_j \).
2. PDC \(j \) updates \(a_j \) as \(a_j^{k+1} = \arg \min_{a_j} L'_\rho \).
3. PDC \(j \) updates all \(w_{lj} \) for \(l \in P_j \): \(w_{lj}^{k+1} = w_{lj}^k - \rho(a_i^{k+1} - a_j^{k+1}) \).
4. PDC \(j \) sends \(a_j^{k+1} \) to all \(l \in P_j \cup S_j \), and receives \(a_l^{k+1} \) from \(l \in S_j \).
5. PDC \(j \) updates all \(w_{jl} \) for \(l \in S_j \): \(w_{jl}^{k+1} = w_{jl}^k - \rho(a_i^{k+1} - a_j^{k+1}) \).
6. PDC \(j \) calculates \(E_j^k \) and \(E_{jl}^k \) for \(l \in P_j \cup S_j \).
Resilient Distributed Prony using D-ADMM

1. Each PDC j receives the update of a_i^{k+1} for all $l \in P_j$.

2. PDC j updates a_j as $a_j^{k+1} = \arg \min_{a_j} L'_\rho$.

3. PDC j updates all w_{lj} for $l \in P_j$: $w_{lj}^{k+1} = w_{lj}^k - \rho (a_i^{k+1} - a_j^{k+1})$.

4. PDC j sends a_i^{k+1} to all $l \in P_j \cup S_j$, and receives a_l^{k+1} from $l \in S_j$.

5. PDC j updates all w_{jl} for $l \in S_j$: $w_{jl}^{k+1} = w_{jl}^k - \rho (a_i^{k+1} - a_l^{k+1})$.

6. PDC j calculates E_j^k and E_{jl}^k for $l \in P_j \cup S_j$.

7. If $\log(E_{jl}^k) - \log(E_j^k) > E_T$ for any $l \in P_j \cup S_j$, PDC j reports an alert about node j to the ISO.
Resilient Distributed Prony using D-ADMM

1. Each PDC \(j \) receives the update of \(a_i^{k+1} \) for all \(i \in P_j \).
2. PDC \(j \) updates \(a_j \) as \(a_j^{k+1} = \arg \min_{a_j} L'_\rho \).
3. PDC \(j \) updates all \(w_{lj} \) for \(l \in P_j \): \(w_{lj}^{k+1} = w_{lj}^k - \rho(a_i^{k+1} - a_j^{k+1}) \).
4. PDC \(j \) sends \(a_j^{k+1} \) to all \(l \in P_j \cup S_j \), and receives \(a_i^{k+1} \) from \(l \in S_j \).
5. PDC \(j \) updates all \(w_{jl} \) for \(l \in S_j \): \(w_{jl}^{k+1} = w_{jl}^k - \rho(a_i^{k+1} - a_j^{k+1}) \).
6. PDC \(j \) calculates \(E_j^k \) and \(E_{ji}^k \) for \(l \in P_j \cup S_j \).
7. If \(\log(E_{ji}^k) - \log(E_j^k) > E_T \) for any \(l \in P_j \cup S_j \), PDC \(j \) reports an alert about node \(j \) to the ISO.
8. If the ISO gets an alert for PDC \(j \) from all PDCs belonging to \(P_j \cup S_j \) for \(K \) iterations, it removes PDC \(j \), rearranges a new communication graph \(G' \) with the remaining PDCs, and continues the iterations.
Simulation Results

A case study for the IEEE 68 bus model,

- 68 bus, 16 generators
- 5 computational areas
- A three-phase fault is considered occurring at the line connecting buses 1 and 2. The fault starts at $t = 0.1$ sec, clears at bus 1 at $t = 0.15$ sec and at bus 2 at $t = 0.20$ sec, $T_s=0.2$ seconds.
Simulation Results

Figure: S-ADMM

Figure: H-ADMM

Figure: A-ADMM
Simulation Results (D-ADMM) with Attack

$E_T = 8$, $K = 20.$

before detection

after detection
Conclusions

- Development of distributed algorithms is imperative considering the increasing number of PMUs in power systems.

- We consider the problem of estimating the frequencies and damping factors of oscillation modes using Prony method in a distributed way.

- We proposed three cyber-physical architecture for implementing the distributed Prony algorithm using several versions of ADMM.

- The results of the case studies verify that the distributed solution for the oscillation modes converges to the centralized solution.

- Using a heuristic cross verification method we showed how a malicious data manipulation can be detected and isolated.
Future Work

- Investigating the resiliency of the proposed algorithms under more complicated attack scenarios.

(Joint work with Jianhua Zhang)

- Incorporating the asynchronous wide-area communications considering the delay traffic models in both uplink and downlink:

\[
P(t) = \int_{-\infty}^{t} \phi(s) ds = \frac{1}{2} \left[\text{erf} \left(\frac{\mu}{\sqrt{2}\sigma} \right) + \text{erf} \left(\frac{t - \mu}{\sqrt{2}\sigma} \right) \right] + \frac{(p - 1)}{2} e^{\frac{1}{2} \lambda^2 \sigma^2 + \mu \lambda} e^{-\lambda t} \left[\text{erf} \left(\frac{\lambda \sigma^2 + \mu}{\sqrt{2}\sigma} \right) + \text{erf} \left(\frac{t - \lambda \sigma^2 - \mu}{\sqrt{2}\sigma} \right) \right].
\]

- Change the update strategy for downlink (needs convergence proof)

\[
w_i^k = w_i^{k-1} + \rho (a_i^k - (z^{k-1} + \gamma(z^{k-1} - z^{k-2}))), \quad i \notin S_2^k
\]
Part III—Graph-Theoretic Identifiability Analysis of Weighted Consensus Networks
Preliminaries

Consider the following single-input consensus model defined over a graph $G(V, E, W)$:

$$\dot{x}_i(t) = \sum_{j \in \mathcal{N}_i} w_{ij} (x_j(t) - x_i(t)) + b_i u(t), \quad i = 1, \ldots, n$$

Defining $x = [x_1 \ x_2 \ \cdots \ x_n]^T$

$$\dot{x}(t) = \mathcal{L}(W)x(t) + Bu(t), \quad y(t) =Cx(t), \quad x(0) = 0,$$

$x \in \mathbb{R}^n$, $\mathcal{L} = -L \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times 1}$, $W = \{w_{ij}, \forall \ i, j\}$

$$[\mathcal{L}]_{i,j} = \begin{cases} -w_{i,j} & i \sim j \\ \sum_{k \in \mathcal{N}_i} w_{i,k} & i = j \\ 0 & \text{otherwise} \end{cases}$$
Distinguishability/Identifiability

\[\dot{x}(t) = \mathcal{L}(W)x(t) + Bu(t), \quad y(t) = Cx(t), \quad x(0) = 0 \]

Consider two distinct parameter sets \(W \) and \(W' \) (\(W \neq W' \)). These two sets are called *indistinguishable* if the respective models cannot produce different outputs \(y(t) \) for any given input, i.e., \(y(t, W) = y(t, W') \).
Distinguishability/Identifiability

\[\dot{x}(t) = \mathcal{L}(W)x(t) + Bu(t), \quad y(t) = Cx(t), \quad x(0) = 0 \]

Consider two distinct parameter sets \(W \) and \(W' \) \((W \neq W')\). These two sets are called *indistinguishable* if the respective models cannot produce different outputs \(y(t) \) for any given input, i.e., \(y(t, W) = y(t, W') \).

\[
\frac{Y_1(s)}{U_1(s)} = \frac{Y_2(s)}{U_2(s)} = \frac{4.5}{s^4 + 12s^3 + 33s^2 + 18s}
\]
Distinguishability/Identifiability

\[
\dot{x}(t) = \mathcal{L}(W)x(t) + Bu(t), \quad y(t) = Cx(t), \quad x(0) = 0
\]

Consider two distinct parameter sets \(W \) and \(W' \) \((W \neq W')\). These two sets are called \textit{indistinguishable} if the respective models cannot produce different outputs \(y(t) \) for any given input, i.e., \(y(t, W) = y(t, W') \).

If \(W \) and \(W' \) are not indistinguishable, they are \textit{distinguishable}.

A parameter set \(W \) is said to be \textit{globally identifiable} if for all \(W' \neq W \), \(W \) and \(W' \) are distinguishable.
Identifiability Analysis

Identifiability in terms of Markov Parameters

\[
\dot{x}(t) = \mathcal{L}(W)x(t) + Bu(t), \quad y(t) = Cx(t), \quad x(0) = 0
\]

- **Lemma (Grewel, 1976):** The parameter sets W and W' are indistinguishable if and only if
 \[
 C\mathcal{L}^\ell(W)B = C\mathcal{L}^\ell(W')B, \quad \ell \geq 0.
 \]
- W is identifiable if and only if the mapping from W to the Markov parameters is injective (one-to-one).
Our Proposition

- There are analytical results for identifiability analysis of generic dynamic models (as early as 70’s and 80’s).

- Generally, investigating the parameter identifiability for medium and large-scale systems is a difficult and intractable task.

- We develop a simple sensor placement algorithm to guarantee identifiability of the edge-weights W for consensus networks defined over a class of graphs.

- We integrate the results from the graph theory with these classical results of identifiability.
Preliminaries

- Let us consider a rooted graph G with the root being the input node (node indexed by 1).
- Let us partition V into the following sets:

$$S_i = \{v \in V : d(v, 1) = i\}, \quad i = 0, 1, \ldots, p.$$
The Studied Class of Graphs

Assumption 1: For a rooted graph G, nodes $v_l, v_q, v_s \in S_i$, $v_j \in S_{i+1}, \forall \ i \geq 1$ satisfy the following properties:

$$
\begin{align*}
&v_l \sim v_j, \ v_q \sim v_j \Rightarrow v_l = v_q, \\
&(v_l \in S^l_i) \sim (v_j \in S^j_i) \Rightarrow l = j, \\
&\dim(\{qv \in E(G) \mid q, v \in S^j_i\}) \leq 1, \forall \ i, j
\end{align*}
$$
The Studied Class of Graphs

- **Assumption 1:** For a rooted graph G, nodes $v_l, v_q, v_s \in S_i, v_j \in S_{i+1}, \forall \; i \geq 1$ satisfy the following properties:

 \[v_l \sim v_j, \quad v_q \sim v_j \implies v_l = v_q, \]

 \[(v_l \in S^l_i) \sim (v_j \in S^j_i) \implies l = j, \]

 \[\dim(\{qv \in \mathcal{E}(G) \mid q, v \in S^j_i\}) \leq 1, \; \forall \; i, j \]

- **Assumption 2:** W is identifiable if $C = I_n$.

- Parameter b is not identifiable regardless of choice of C.

![Graph Diagram](attachment:graph.png)
Two Supporting Lemmas

Lemma 1—The following holds for \mathcal{L} of a G satisfying Assumption 1:

$$[\mathcal{L}^k]_{v,1} = \begin{cases} 0 & 0 \leq k \leq d(v,1) - 1 \\
W(P_{v,1}) & k = d(v,1) \end{cases}$$

$P_{v,1}$ is the unique path of length $d(v,1)$ connecting nodes v and 1. $W(P_{v,1})$ is the weight of path $P_{v,1}$:

$$W(P) = \prod_{e \in P} w_e$$

Proof: By strong induction on k.
Two Supporting Lemmas

Lemma 2– Consider a node indexed as v in G and its neighboring nodes denoted by v_1, \ldots, v_s. Let $\mathcal{L} = -L$, where L is the weighted Laplacian matrix of G. If \mathcal{H} denotes a subgraph of G induced by the set of all edges incident to v, and $\mathcal{V}_\mathcal{H}$ and $\mathcal{W}_\mathcal{H}$ denote the vertex set and the weights of all edges belonging to \mathcal{H} respectively, then $[\mathcal{L}^i]_{v_s,1}$ can be uniquely computed from $\mathcal{W}_\mathcal{H}$ and $[\mathcal{L}^i]_{m,1}$, $(m \in \mathcal{V}_\mathcal{H} \setminus \{v_s\})$, $\forall i \geq 1$.

v_s is called an available node.
The Proposed Algorithm

- Start with S_0 and place a sensor at this node.
The Proposed Algorithm

- Start with S_0 and place a sensor at this node.
- for $k = 1 : p$ for each set of siblings S^i_k
 - choose any $|S^i_k| - 1$ nodes belonging to S^i_k and place sensors at them.
The Proposed Algorithm

- Start with S_0 and place a sensor at this node.
- for $k = 1 : p$ for each set of siblings S_k^i
 - choose any $|S_k^i| - 1$ nodes belonging to S_k^i and place sensors at them.
 - for each neighboring siblings $q, v \in S_{k-1}^i$
 - if S_k^q and S_k^v are both non-empty
 - place an additional sensor in either S_k^q or S_k^v.
The Main Theorem

Consider the following model with G satisfying Assumptions 1 and 2.

$$\dot{x}(t) = \mathcal{L}(W)x(t) + Bu(t), \quad y(t) = Cx(t), \quad x(0) = 0$$

If $S \subset V$ is a set of sensor nodes determined by the proposed algorithm, $y(t)$ is the corresponding output measured by S, and $H(W)$ is the transfer function from $u(t)$ to $y(t)$, then the mapping from the W to $H(W)$ is one-to-one.
The Main Theorem

Consider the following model with G satisfying Assumptions 1 and 2.

$$\dot{x}(t) = \mathcal{L}(W)x(t) + Bu(t), \quad y(t) = Cx(t), \quad x(0) = 0$$

If $S \subset \mathcal{V}$ is a set of sensor nodes determined by the proposed algorithm, $y(t)$ is the corresponding output measured by S, and $H(W)$ is the transfer function from $u(t)$ to $y(t)$, then the mapping from the W to $H(W)$ is one-to-one.

Proof:

$$W_{j-1,j} \triangleq \{w_{u,v} \in W \mid u \in S_{j-1}, \ v \in S_j\},$$

$$W_{j,j} \triangleq \{w_{u,v} \in W \mid u, v \in S_j\}, \quad j = 1, \ldots, p.Q_j \triangleq C\mathcal{L}^j B, \quad j = 1, 2, \ldots, p.$$

The proof follows from strong induction on j. In each step we proof the injective mapping of $(W_{j-1,j}, W_{j-1,j-1})$ to $\bigcup_{i=1}^{2n-1} Q_i$.
More Results

- **Proposition 1:** If the proposed algorithm is applied to a rooted-tree T, then the number of placed sensors is equal to the number of non-input leaves of T, i.e., the set of leaves that are not the input node.

- **Proposition 2:** If T is a star-graph, then the minimum number of sensors to identify W is $(n - 2)$.

![Network 1](image1)

![Network 2](image2)

![Network 3](image3)
Summary and Conclusions

- We investigate the identifiability problem in Laplacian consensus NDS.
- We translate the classical results of identifiability in terms of graph properties.
- We propose a sensor placement algorithm for a class of graphs.
- We prove that, our algorithm provides a sufficient condition of identifiability of the edge weights.
Publications (Published/Accepted)

Book Chapter:

Journal Articles:

Conference Proceedings:

Publications (Under review/ To be submitted)

Journal Articles:

Conference Proceedings (submitted):