Toward Effective Automated Content Analysis Via Crowdsourcing

Jiele Wu, Chau-Wai Wong, Xinyan Zhao, Xianpeng Liu

b Beijing Institute of Technology, China
n North Carolina State University, USA
u University of North Carolina at Chapel Hill, USA
Complex Tasks are Difficult for Crowdsourcing

- Coding/annotation by crowdsourcing was shown to be effective when measuring relatively **objective features**.

- However, latent **subjective features** are difficult for crowdsourcing:
 - Lack of validated tools to measure complex subjective semantic features, e.g., emotion, frame, moral reasoning.
 - Online workers’ response quality tend to deteriorate as they work longer.

- **A Core Question**: How to balance quality and efficiency in crowdsourcing coding/annotation of difficult tasks?
Proposed Solution: Quality-Aware Annotation System

• Proposed quality-aware semantic annotation system:
 – **Qualifying**: Select MTurk workers who are capable of complex coding.
 – **Monitor** MTurk workers’ performance and provide feedback over time.

• Tested the system through a task of labeling emotions of tweets related to the Flint water crisis.
 – 11 emotions: anger, disappoint, sorrow, fear, and worry, satisfied, hope, sympathy, grateful, surprise and sarcasm.¹,²
 – We had each tweet labeled 5 times for 9,287 tweets, resulting in a total of 42,980 labels.³

Qualifying Process

1) **Training session:**
 Background, instructions, 5 training questions.

2) **Test session:**
 One is qualified if the score over 15 tweets passes a baseline.

Real-Time Performance Monitoring

Qualification

1) A worker codes 20 randomly selected tweets (5 have ground-truth labels).

2) Ground-truth data (N = 100) labeled by human experts.

Coding/Annotation

1) **Quality score:**
 Percentage of correctly answered questions out of 5 embedded ones.

2) Must maintain cumulative quality score > 60% to work on subsequent tasks.
RESULTS
1. Quality Control is a Must for Complex Coding Tasks

• The qualifying process can identify eligible workers:
 – 150 out of 1,030 MTurk workers were interested in & capable of doing complex coding task.

• The real-time performance monitoring is effective in removing weak workers:
 – 11% workers could not maintain cumulative quality scores above the minimally qualifying score, 60%.
 – They were disqualified from subsequent tasks.
2. Majority Voting is Consistent with Experts Labeling

Majority-voting quality scores evaluated on 20 tweets to be labeled.

Improving trend \rightarrow majority voting is more trustworthy as more votes are used.
3. Majority Voting Results Are Learnable

- We characterized the *learnability* using the generalization capability of a *powerful learning system*, e.g., a fine-tuned deep neural network.

- We show that majority-voting based labels can be learned, achieving a classification accuracy around 70%–80%.

<table>
<thead>
<tr>
<th>Weight scheme</th>
<th>Valence</th>
<th>Resiliency</th>
<th>Attribution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Balanced acc</td>
<td>Balanced acc</td>
<td>Balanced acc</td>
</tr>
<tr>
<td></td>
<td>Ave Gain</td>
<td>Ave Gain</td>
<td>Ave Gain</td>
</tr>
<tr>
<td>Equal weight</td>
<td>70.3 -</td>
<td>78.4 -</td>
<td>72.8 -</td>
</tr>
<tr>
<td>Design 1</td>
<td>68.8 -1.5</td>
<td>79.5 1.1</td>
<td>72.5 -0.3</td>
</tr>
<tr>
<td>Design 2</td>
<td>70.3 0</td>
<td>79.9 1.5</td>
<td>75.6 2.8</td>
</tr>
<tr>
<td>Design 3</td>
<td>70.9 0.6</td>
<td>81.0 2.6</td>
<td>73.2 0.4</td>
</tr>
</tbody>
</table>

Weighted voting can improve labels’ quality.
Discussions & Recommendations

• Challenges for labeling multiple-emotion tweets:
 – Intuitive emotions (anger) tend to mask the less intuitive ones (sarcasm).
 – Workers tend to just report one primary label rather than all emotions.
 – Solutions: i) Adapt a multiple-label task into a single-label task. ii) Craft a quality metric to encourage the discovery of secondary labels.

• Workers may unintentionally label own emotions instead of tweets’ emotions.
 – Solution: In addition to the initial training, constantly remind workers of the coding/annotation rule.

• Coding accuracy of tweets vary from 10% to 100%.
 – Solution: Select easier questions for lower performing workers.
Conclusion

- We have proposed a crowdsourcing system that can harvest a large number of high-quality labels for complex coding tasks.
- We have shown that labels aggregated based on majority voting are accurate, consistent, and learnable.

Welcome to our poster!