Comparing Usability through Computational Cognitive Modeling

IE team
11 Jan 2006

Process

Old Interface - SAMI
- Develop Java-based Prototype
- Develop GOMSL Model
- Integrated Execution of Java Prototype & GOMSL
- Output: Total Execution Time, Learning Analysis, Method Analysis

New Interface – Cookbook
- Develop Java-based Prototype
- Develop GOMSL Model
- Integrated Execution of Java Prototype & GOMSL
- Output: Total Execution Time, Learning Analysis, Method Analysis

Usability Comparison!!

Same Tasks
Developing a Prototype for the Barcoder Dialog

Original Barcoder Interface

Note: The Java-based prototype has similar functions to the original interface and provides for similar interactivity.

New Cookbook Barcoder Interface

Developing a Prototype for the Method Editor

Original SAMI Interface

Note: The Java-based prototype is an almost identical replicate of the original SAMI Method editor.

Java Prototype of SAMI Interface
Developing a Prototype for the New Method Editor

Note: The HTML prototype was used for usability testing with CELISCA personnel. The Java-based prototype was necessary for cognitive model testing.

Integration between Java device and GOMSL

EGLEAN

GOMSL Model - SAMI & Cookbook

Scenario event

xml

Control Event

JAVA

Device Representation

- Java Application
- SAMI & Cookbook interfaces

Output

- Work Sequence
- Total Execution Time
- Learning Analysis
- Workload Report
Time parameters for each operator in GOMSL

- Look_for_object_whose property is value...and_store_under <tag> : 1200msec.
- Keystroke key_name: 280msec.
- Type_in String: 280msec./character
- Click mouse_button: 200msec.
- Double_click: 400msec.
- Hold_down mouse_button: 100msec.
- Release mouse_button: 100msec
- Point_to target_object: 1100msec
- Think_of: 1200msec.

Developing the GOMSL Models

- Used “Task_item”(s) for handling all of the tasks in the original scenario script used for usability test with human subjects.
- To ensure plausibility and to resemble human trials, we used two time consuming “Think_of” operators for representing the time to read each task on in the printed scenario script.
- We applied same task strategies with Java-based prototypes of both interfaces (SAMI and Cookbook interfaces)
Sample GOMSL Model (for SAMI interface)

- TaskItem T38
 - Number is "38".
 - Type is Drag_into_Center.
 - Label is "Home".
 - Next is "39".
 - Target is "Center".

- TaskItem T39
 - Number is "39".
 - Type is Draw_Line.
 - Next is "End".
 - Target1 is "Biomek_Center".
 - Target2 is "Home2_Center".

Method for goal Manipulating SAMI
 - Step 1: Store "1" under current_task_number.
 - Step 2: Decide: If current_task_number is "End", Then Return_with_goal_accomplished.
 - Step 3: Accomplish: goal Read Scenario.
 - Step 4: Get_task_item_whose Number is current_task_number and_store_under current_task.
 - Step 5: Accomplish: Perform Unit_Task.
 - Step 6: Store Next of current_task under current_task_number.
 - Step 7: Goto 2.

Method for goal Read Scenario
 - Step 1: Think_of "Read a line on scenario sheet".
 - Step 2: Think_of "Read a line on scenario sheet".
 - Step 3: Return_with_goal_accomplished.

Method for goal Perform_Unit_Task
 - If Type of current_task is Drag_into_Center, then Accomplish: goal Drag Icon using Label of current_task.
 - If Type of current_task is Draw_Line, then Accomplish: goal Draw Line using Target1 of current_task.
 - If Type of current_task is Click_for_Popup, then Accomplish: goal Configure Select using Label of current_task.
 - If Type of current_task is Select_Drop_down_Menu, then Accomplish: goal Configure Select using Target of current_task.
 - Return_with_goal_accomplished.

Comparison of Old and New Method Editor Output

- Total Execution Time
 - Old SAMI Interface: 317.950 msec.
 - New Cookbook Interface: 365.050 msec.
- Learning Analysis

SAMI

<table>
<thead>
<tr>
<th>Method Units</th>
<th>Number</th>
<th>Learned to Learn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manipulating SAMI</td>
<td>8</td>
<td>0 / 8</td>
</tr>
<tr>
<td>Read Scenario</td>
<td>4</td>
<td>0 / 4</td>
</tr>
<tr>
<td>Perform Unit_Task</td>
<td>7</td>
<td>0 / 7</td>
</tr>
<tr>
<td>Clicking Object</td>
<td>5</td>
<td>0 / 5</td>
</tr>
<tr>
<td>Drag Icon</td>
<td>8</td>
<td>0 / 8</td>
</tr>
<tr>
<td>Draw Line</td>
<td>9</td>
<td>0 / 9</td>
</tr>
<tr>
<td>Configure Select</td>
<td>8</td>
<td>0 / 8</td>
</tr>
<tr>
<td>Typing String</td>
<td>6</td>
<td>0 / 6</td>
</tr>
<tr>
<td>Total</td>
<td>55</td>
<td>0 / 55</td>
</tr>
</tbody>
</table>

Cookbook

<table>
<thead>
<tr>
<th>Method Units</th>
<th>Number</th>
<th>Learned to Learn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manipulating Method_Edit</td>
<td>8</td>
<td>0 / 8</td>
</tr>
<tr>
<td>Read Scenario</td>
<td>4</td>
<td>0 / 4</td>
</tr>
<tr>
<td>Perform Unit_task</td>
<td>5</td>
<td>0 / 5</td>
</tr>
<tr>
<td>Typing String</td>
<td>6</td>
<td>0 / 6</td>
</tr>
<tr>
<td>Clicking Object</td>
<td>5</td>
<td>0 / 5</td>
</tr>
<tr>
<td>Select_Drop_down_Menu</td>
<td>7</td>
<td>0 / 7</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>0 / 35</td>
</tr>
</tbody>
</table>

Note: Typing the essay in the Cookbook interface took 189 msec. This is over half the total execution time.

New interface requires far fewer steps in methods to be learned.
Comparison of Outputs (Continued)

- **Workload Reports**

<table>
<thead>
<tr>
<th>Freq</th>
<th>Subtotal</th>
<th>Avg. Time</th>
<th>% of Total</th>
<th>Method for goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>158.100</td>
<td>4.054</td>
<td>49.72</td>
<td>Perform Unit task</td>
</tr>
<tr>
<td>39</td>
<td>99.450</td>
<td>2.550</td>
<td>31.28</td>
<td>Read Scenario</td>
</tr>
<tr>
<td>11</td>
<td>29.950</td>
<td>2.723</td>
<td>9.42</td>
<td>Clicking Object</td>
</tr>
<tr>
<td>4</td>
<td>16.800</td>
<td>4.200</td>
<td>5.28</td>
<td>Configure Select</td>
</tr>
<tr>
<td>11</td>
<td>38.900</td>
<td>3.536</td>
<td>12.23</td>
<td>Drag Icon</td>
</tr>
<tr>
<td>10</td>
<td>55.000</td>
<td>5.500</td>
<td>17.3</td>
<td>Draw Line</td>
</tr>
<tr>
<td>3</td>
<td>13.550</td>
<td>4.517</td>
<td>4.26</td>
<td>Typing String</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Freq</th>
<th>Subtotal</th>
<th>Avg. Time</th>
<th>% of Total</th>
<th>Method for goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>266.700</td>
<td>11.112</td>
<td>73.06</td>
<td>Perform Unit task</td>
</tr>
<tr>
<td>24</td>
<td>61.200</td>
<td>2.550</td>
<td>16.76</td>
<td>Read Scenario</td>
</tr>
<tr>
<td>18</td>
<td>50.700</td>
<td>2.817</td>
<td>13.89</td>
<td>Clicking Object</td>
</tr>
<tr>
<td>3</td>
<td>12.900</td>
<td>4.300</td>
<td>3.53</td>
<td>Select Drop_down_Menu</td>
</tr>
<tr>
<td>3</td>
<td>200.700</td>
<td>66.900</td>
<td>54.98</td>
<td>Typing String</td>
</tr>
</tbody>
</table>

User Performance Analysis

- **Performance Analysis**

 - Develop Java-based Prototype
 - Incorporate time and error collection methods
 - Expert and Non-Biologists Recruited

 Results
 - Subtask Times
 - Total Execution Time
 - Total Number of Errors

Note: Remote usability analysis used for Expert Biologists.
User Performance Times for Barcoder A/C Dialog

<table>
<thead>
<tr>
<th></th>
<th>CELSCLA (ExpertOperator)</th>
<th>NCSU (NonBioOperator)</th>
<th>GOMS</th>
<th>SAMI</th>
<th>Cookbook</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std</td>
<td>Mean</td>
<td>Std</td>
<td>Mean</td>
</tr>
<tr>
<td>Determine Side</td>
<td>1.95</td>
<td>0.00</td>
<td>3.59</td>
<td>1.79</td>
<td>1</td>
</tr>
<tr>
<td>Determine label ty</td>
<td>1.55</td>
<td>0.00</td>
<td>3.93</td>
<td>2.36</td>
<td>1</td>
</tr>
<tr>
<td>Determine label content</td>
<td>6.45</td>
<td>0.00</td>
<td>12.86</td>
<td>6.50</td>
<td>1</td>
</tr>
<tr>
<td>Total time on task</td>
<td>14.00</td>
<td>0.00</td>
<td>24.00</td>
<td>10.43</td>
<td>1</td>
</tr>
</tbody>
</table>

Validation of interface use times.
- Model output not sign. different from actual human data.
- Expert performance across interfaces.
- No significant difference.
- Experts adapt quickly to new interface.

Conclusion

GOMS Development:
- The Java-based prototype has similar functions and interactivity as the original application.
- Results are highly generalizable to actual task.

Usability Analysis:
- Operators can quickly achieve proficiency with new barcoder interface.
- Experts can adapt to new interface quickly to achieve performance comparable to use of existing software requiring high training.
- Methods to be learned in new interface are fewer, but typing time is a large part of the total task time.