General Notes on Trypsin Test Procedure:

Automated performance procedure:

- Label plates (using bar code)
- Prepare sample dilution:
 - Use stock solution in deep well plate to create sample plates (with single-channel pipeting tool).
 - Create flat (sample) plates with different concentrations of samples (from deep well plate).
- Prepare test plates:
 - Transfer dilutions from sample plates to test plates.
 - Combine dilutions with reagents (contained in reservoirs at pipeting stations - Biomek 2000 or Biomek FX):
 - Buffer
 - Trypsin solution (control)
 - Solutions containing no Trypsin (CaCL) (control blank)
 - BPNA (enzyme substrate or reagent)
 - Acetic acid (reagent)

(Note: See pipeting steps on copy of poster of Trypsin assay.)

- Incubation step:
 - Preheat incubator to 37°C (normal body temperature. (This is optimal temperature for Trypsin reaction. Trypsin breakdowns substrate, BAPNA – enzyme substrate, at this temperature.).
 - Insert plates in incubator (manually) using backdoor of device.
 - Incubation for preset duration.
- Plate reader – measures absorbance:
 - Specify wavelength of light for measurement (“yellow”).
 - Get raw data – absorbance levels for each column in plate (control, control blank, sample, sample blank).
 - Conduct basic statistical analysis to identify outliers (depends on sample size and sample values) \(\rightarrow\) Dixon test
 - Calculations using Excel:
 - Average across replicates
 - Standard deviation
 - Relative standard deviation (CV[\%])
 - Control - control blank and sample – sample blank respectively (preliminary calculation).
 - Calculate IC50 for standard compound (create curve from 8 data points)
 - Normalized trypsin activity [\%] (= activity level)
• Graphical display – create graph of activity levels for each compound
 ▪ Compare activity level with criteria activity.
 ▪ Decide whether compound is active.
 ▪ For standard compound: Determination of IC50 by Statistic program “Origin” (curve fitting) to compare with former results (“Does the assay still work”?)
 ▪ Calculation of the Z' – Factor (quality criteria)

Manual performance procedure:

(Uses/purpose of procedure:
 Setup a new assay.
 Use as basis for comparison with automated version of assay (make sure results are good).
 Use of a standard compound in manual process.
 Helps operators understand technology of assay (basis for programming SAMI system).

- Label vials and plates with pen.
- Create sample dilutions in tubes - use vials.
 o A master vial is used to create sample vials (single-channel tool).
- Prepare test plates – use flat plates, vials, and reservoirs (using single-channel and eight channel pipet tools)
 o Test plates are created by adding dilutions and reagents to wells following same procedure as used in automated version of process.)
- Incubation step:
 o Human handling of plates in same manner as robotic handling.
- Plate reader use:
 o Occurs is same manner as use in automated process.
 o Operator looks at data through plate reader software.
 (Excel-based package allowing for viewing in plate format or text file.)
 o Conduct basic statistical analysis to identify outliers (depends on sample size and sample values) → Dixon test
 o Calculations using Excel:
 ▪ Average across replicates
 ▪ Standard deviation
 ▪ Relative standard deviation (CV[%])
 ▪ Control - control blank and sample – sample blank respectively (preliminary calculation)
 ▪ Normalized trypsin activity [%] (= activity level)
 ▪ Graphical display
 o Determination of IC50 by Statistic program “Origin” (curve fitting)
 o Compare of activity levels (reproducibility)
 o Comparism of IC50 values of manual procedure and automated procedure