Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides

B. Corcoran1, C. Monat1*, C. Grillet1, D. J. Moss1, B. J. Eggleton1, T. P. White2, L. O’Faolain2 and T. F. Krauss2

Slow light has attracted significant interest recently as a potential solution for optical delay lines and time-domain optical signal processing1,2. Perhaps even more significant is the possibility of dramatically enhancing nonlinear optical effects3,4 due to the spatial compression of optical energy5–7. Two-dimensional silicon photonic-crystal waveguides have proven to be a powerful platform for realizing slow light, being compatible with on-chip integration and offering wide-bandwidth and dispersion-free propagation2. Here, we report the slow-light enhancement of a nonlinear optical process in a two-dimensional silicon photonic-crystal waveguide. We observe visible third-harmonic-generation at a wavelength of 520 nm with only a few watts of peak power, and demonstrate strong third-harmonic-generation enhancement due to the reduced group velocity of the near-infrared pump signal. This demonstrates yet another unexpected nonlinear function realized in a CMOS-compatible silicon waveguide.

Although silicon has been the material of choice for the CMOS industry and more recently for integrated photonics, its optical properties—for example, light emission—still provide major challenges. In addition to an indirect bandgap and inversion symmetry, its strong absorption in the visible restricts the potential emission to wavelengths above ~800 nm. Nonlinear optical effects, such as stimulated Raman scattering and third-harmonic generation (THG) offer new ‘tricks’ for light emission8, thereby extending the functionality of silicon photonics.

Two-dimensional photonic crystals have recently attracted considerable attention by controlling the propagation of light in unprecedented ways2,9. In particular, they can produce slow light1,2 with the ability to dramatically enhance nonlinear optical phenomena3,4,7. However, although nonlinear optical processes have been widely demonstrated in silicon nanowires2,8,10,11, corresponding demonstrations in silicon photonic crystals—especially with slow light—have been elusive, only having been reported in the context of the electro–optic coefficient12.

Here, we report visible (green light) THG in slow-light silicon photonic-crystal waveguides through end-fire coupling of near-infrared pulses with ~10 W peak pump power. This power is five to six orders of magnitude lower than that of earlier THG demonstrations in bulk silicon13–16 and arises from a combination of extreme mode confinement by the photonic-crystal waveguide, slow-light enhancement and extraction of the visible light through the photonic-crystal lattice.

The generation of third-harmonic light (electric field intensity $I_{3\omega}$, frequency 3ω) from a fundamental pump beam (I_{ω}, ω) propagating in a lossless homogeneous waveguide of length L is given by

$$I_{3\omega} = (3\omega)^2 \left(\frac{2\pi}{n_c} \right)^4 \frac{P_\omega^2 L^2 (\chi^{(3)})^2 \sin^2 \left[\frac{\Delta k(\omega)L}{2} \right]}{f(A_{\omega}, A_{3\omega})} \quad (1)$$

where $\chi^{(3)}$ and n are the third-order nonlinear susceptibility and refractive index of silicon, respectively, $\Delta k = k_{3\omega} - 3k_{\omega}$ is the phase mismatch between the fundamental mode and the third-harmonic wavevectors and $f(A_{\omega}, A_{3\omega})$ accounts for the spatial overlap between the two modes. For perfect phase matching ($\Delta k = 0$) and maximum mode overlap ($f = 1$), equation (1) primarily reflects the THG cubic dependence on I_{ω}, which arises from the basic nature of the THG process—that is, converting three photons into a single 3ω photon (Fig. 1a). Clearly, then, increasing I_{ω} within the nonlinear material is crucial to enhancing the THG efficiency. This has been achieved in the past by using ultrahigh-Q, small-modal-volume silica microtrodors18, although these tend to yield narrow bandwidth and dispersive features. Another approach has been to make use of the high density of states at the band-edge of periodic structures in various materials and geometries, such as Bragg gratings in porous silicon19,20, two-dimensional GaN photonic crystals21 and three-dimensional polystyrene photonic crystals22. These schemes generally involve a free-space configuration (reflection or diffraction surface probe experiments) where the lack of optical confinement limits the potential enhancement of $I_{3\omega}$ thus requiring megawatt peak pump powers.

Combining optical confinement and dispersion engineering through the use of optimized two-dimensional photonic-crystal waveguides23–25 is highly promising because $I_{3\omega}$ is related to the peak power (P_ω) through

$$I_{3\omega} \propto \frac{P_\omega}{A_{\omega}} \cdot \frac{n_g}{n} \quad (2)$$

where A_ω and n_g are the effective area and group index of the fundamental mode, respectively. Hence, by using the extreme concentration of optical energy afforded by (i) the tight confinement of light within the high-index, sub-micrometre-scale ($A_\omega \approx 0.4 \mu m^2$) silicon photonic-crystal waveguides and (ii) spatial pulse compression in the slow light ($v_g = c/40$) regime, we significantly reduce the peak pump power required to observe THG to 10 W. In addition, the photonic crystal structure provides a mechanism for light extraction at a wavelength that would otherwise be strongly
absorbed, thereby opening the spectral emission window of silicon to the visible.

Our device consists of an 80-μm-long W1 photonic-crystal waveguide in a 220-nm-thick air-suspended silicon slab, coupled to two tapered ridge waveguides (Fig. 1a,b). Unlike the highly dispersive slow-light mode associated with the band edge of typical photonic-crystal waveguides, here the fundamental mode is engineered to display both low group velocity and low dispersion (Fig. 2a,b). Large dispersion typically broadens and distorts short pulses, which tends to compromise the benefits of slow light for nonlinear applications. In our case, however, we focus on the spectral window (1,550–1,559 nm) where the measured group velocity of the fundamental mode varies almost linearly by a factor of 4 from c/10 to c/40 (Fig. 2b), enabling us to investigate the effect of group velocity.

When launching a near-infrared 1.5-ps pulse train (4 MHz) into the photonic-crystal waveguide, we observe green light emitted from the surface of the chip by eye (Fig. 3a). The emission is directional, being at an angle from the vertical, in the backward direction, as indicated by the schematic in Fig. 1a. Imaging the emission onto a calibrated linear charge-coupled-device (CCD) camera using a microscope objective with a numerical aperture (NA) of 0.25 reveals that it is localized above the photonic-crystal waveguide and decays exponentially along its length (Fig. 3b). The total emitted green power (integrated spatially over the CCD image, Fig. 4) shows a cubic dependence on the coupled pump power of up to 65 μW, and is verified to have a wavelength of 520 ± 5 nm using bandpass filters, both of which are expected for a THG process driven by a 1,560-nm pump. At higher pump powers,
starts at the entrance of the slow-light photonic-crystal section (after the pump is injected from the left-hand side. Note that the green light emission microscope objective and imaged onto the CCD camera, with the enclosed surface of the chip as seen by eye.

a slight saturation occurs in the fundamental power transmission (see Fig. 4) due to two-photon and subsequent free-carrier absorption. We observe a maximum THG output of \(\sim 10\) pW for 80 \(\mu\)W (10 W) average (peak) pump power.

In general, there are a number of effects that can contribute to a variation in the THG efficiency along the waveguide, including group velocity dispersion (GVD) and nonlinear absorption, both of which degrade the fundamental pulse intensity along the photonic-crystal waveguide. It potentially also includes phase matching between the fundamental and third-harmonic modes, although here the extremely short (\(\sim 1\) \(\mu\)m) absorption length of the third-harmonic light in silicon damps this effect (see Methods). In order to minimize these effects and determine the dependence of the THG efficiency solely on group velocity, we therefore restricted our measurements to a region within 5 \(\mu\)m of the photonic-crystal waveguide entrance, which is much smaller than the dispersion length associated with the GVD, even in the ‘fast light’ regime (see Methods).

Figure 5a,b shows that the observed THG power displays a clear enhancement for pump wavelengths near 1,557 nm where the group velocity is lowest. Equation (1) predicts a cubic dependence on \(n_g\) of the THG power obtained at a fixed pump power. However, to minimize the nonlinear loss saturation effect discussed above at all wavelengths, we chose instead to plot on Fig. 5c,d the input power density \(P_{\text{in}}/A_{\text{in}}\) required to produce a constant (and sufficiently low) THG output power (\(\sim 0.2\) pW) as the wavelength (hence group index \(n_g\)) is varied. By plotting the power density \(P_{\text{in}}/A_{\text{in}}\) rather than power \(P_{\text{in}}\) we factor out the spectral dependence of \(A_{\text{in}}\) and focus on the variation due solely to group index (see Methods). The results show very good agreement with a \(1/n_g\) variation, as expected from equation (2); \(P_{\text{in}}/A_{\text{in}} \propto I_{\text{in}}/n_g\), when considering a constant intensity \(I_{\text{in}}\) responsible for a given THG signal. Note that both the trend and the variation in enhancement are well accounted for using only the experimentally measured group velocity dispersion of Fig. 2b. It is clear, then, that any contribution from other effects would cause a discrepancy with experiment, even if (by coincidence) its wavelength dependence happened to be identical to that of \(n_g\). Hence, we believe these results conclusively demonstrate direct slow-light enhancement of this nonlinear process.

Our experiments were performed with \(\sim 10\) W peak powers, corresponding to a reduction of five to six orders of magnitude compared to previous reports\(^{15-16}\) of THG in silicon. Even more significantly, this work represents a nearly 100-fold reduction in pump power relative to fully phase-matched THG in periodically-poled lithium niobate (PPLN)/potassium titanyl phosphate (KTP) waveguides\(^{29}\). Although a comparable power density (\(\sim 10^2\) GW cm\(^{-2}\)) has been achieved in ultrahigh-Q (\(\sim 10^7\)) cavities\(^{18}\), the advantage of the photonic-crystal waveguide approach is that the full bandwidth of short optical pulses can be accommodated. We estimate our conversion efficiency \(\eta\) to be \(\sim 10^{-7}\) (or \(5 \times 10^{-10}\) for 1 W peak pump power), which represents an increase of five orders of magnitude over that reported in three-dimensional polystyrene photonic crystals (\(\eta \approx 1 \times 10^{-15}\) for 1 W peak pump power as inferred from the quoted value of \(\eta \approx 1 \times 10^{-5}\) at \(P_{\text{in}} = 10\) MW; ref. 22). This efficiency could be further improved, for example, by decreasing the effective area (\(\eta \propto 1/A_{\text{eff}}\)) or the group velocity (\(\eta \propto n_g\)). A group velocity of \(c/80\) can be reasonably well achieved with this photonic-crystal waveguide design\(^{24}\); this would provide an order of magnitude improvement in \(\eta\). Efficiency could also be improved at high pump powers by reducing nonlinear losses (in particular due to free carriers) through techniques such as ion implantation.

As well as tight optical confinement and slow light, the two-dimensional photonic-crystal geometry offers additional versatility to improve the efficiency of the generation and extraction of third-harmonic light. In periodic structures, the phase-matching condition, \(\Delta k = 0\), is relaxed to \(\Delta k = \pm mG\), where \(mG\) can be any reciprocal lattice wavevector, increasing the possibilities for phase matching (see Methods). Perhaps more importantly in our case, because the absorption length at 3\(\omega\) is extremely short (3 dB \(\mu\)m\(^{-1}\) absorption loss at 320 nm in silicon\(^{20}\)), the photonic crystal also provides a suitable platform for extracting light by coupling to surface radiating modes above the light line. The directive nature of the emission (\(\sim 10^7\)) as well as the absence of green emission from the access waveguides, suggests that a component of the third-harmonic Bloch mode in the photonic crystal lies above the light line, as illustrated by the band structure in Fig. 2a. This provides a mechanism for the THG to be extracted out of plane. However, because the 3\(\omega\) Bloch mode also contains harmonic components well confined in the photonic-crystal slab below the light line, the measured picowatt level of green emission is expected to be significantly lower than the total THG power generated in the photonic-crystal waveguide. The conversion efficiency reported above is therefore a conservative estimate. In addition, the photonic-crystal waveguide geometry was not optimized for third-harmonic extraction in this study, so modification may well increase overall...
device efficiency. Finally, we note that the optimization of all of these processes can be done across a wide range of frequencies, allowing one to address the entire visible spectrum, or to extend the THG to other spectral windows.

In conclusion, we report optical THG of visible (green) light, enhanced by a reduction in the group velocity, or slow light in two-dimensional silicon photonic-crystal waveguides. We observe visible green emission for only ~10 W peak pump powers due to both the tight light confinement within the photonic-crystal waveguide and the energy density enhancement provided by the slow-light mode. Following recent observations of other nonlinear effects, such as efficient Raman amplification and four-wave mixing, the THG observed here further highlights the rich photonic functionality available with the silicon photonics platform.

Methods

Device structure and fabrication. The two-dimensional photonic-crystal structure consisted of a triangular lattice of air holes with lattice constant a = 414 nm and hole radius 118 nm (0.286a) etched into a 220-nm-thick silicon suspended membrane. A W1 waveguide was introduced by omitting a single row of holes along the FK direction to form a linear defect. The total photonic crystal length was 80 μm, and the lattice period of the first and last 10 periods was increased to 444 nm parallel to the waveguide to enhance coupling to the slow-light mode. The dispersion of the photonic-crystal waveguide was engineered by shifting the first two rows of holes adjacent to the guide perpendicular to the direction of propagation. The dispersion of the photonic-crystal waveguide was determined by fitting the first two rows of holes adjacent to the guide perpendicular to the direction of propagation. The coupling to the photonic crystal is determined by fitting the coupled power in the photonic crystal through 2-mm-long ridge access waveguides with widths tapered from 3 to 0.7 μm over 200 μm close to the photonic-crystal waveguide.

Transmission experiment. The device was probed using a polarization-controlled, near transform-limited, figure-of-eight fibre laser, tunable over the C-band. The pulses were sech²-shaped, ~1.5 ps long, with a spectral full-width at half-maximum of ~2 nm, and were amplified through an erbium-doped fibre amplifier. The pulses were launched into the transverse electric (TE)-like mode of the waveguide, using fused fibres with a 2.5-μm focal spot diameter. To calculate the coupled power in Figs 4 and 5 from the power launched into the input lensed fibre, we estimated an out-coupling insertion loss of 8 dB. This is a typical value obtained from independent self-phase-modulation measurements on the same waveguide. Because this coupling loss is nonetheless the lowest typically measured, our estimation of the THG efficiency represents a low, or conservative, limit of the third-harmonic efficiency.

Green light measurement. The linearized, fixed-gain, CCD camera (Cohu 4910) was calibrated using a doubled Nd:YAG laser diode with a low relative intensity noise (RIN) with the power externally controlled by an attenuator assembly and measured to be at best ~8 dB, propagation loss in the ridge and nanowire segments (<2–3 dB), scattering loss at the nanowire/photonic crystal interface (<1 dB) and the propagation losses in the photonic-crystal waveguide in the slow-light regime (~2–3 dB). The device was fabricated from a SOITEC silicon-on-insulator wafer by electron-beam lithography (hybrid ZEISS GEMINI 1530/RAITH ELPHY) and reactive ion etching using a CHF₃/SF₆ gas mixture. The silica layer under the photonic-crystal slab was selectively under-etched using a HF solution to leave the photonic-crystal section in a suspended silicon membrane. More details of the procedure are given in ref. 32.

Calculations. The band structures in Fig. 2a were calculated with a two-dimensional periodic boundary conditions through 2-mm-long ridge access waveguides with widths tapered from 3 to 0.7 μm over 200 μm close to the photonic-crystal waveguide. The coupled power in the photonic crystal was calculated using the coupled power in the photonic crystal through 2-mm-long ridge access waveguides with widths tapered from 3 to 0.7 μm over 200 μm close to the photonic-crystal waveguide. To calculate the coupled power in Figs 4 and 5 from the power launched into the input lensed fibre, we estimated an out-coupling insertion loss of 8 dB. This is a typical value obtained from independent self-phase-modulation measurements on the same waveguide. Because this coupling loss is nonetheless the lowest typically measured, our estimation of the THG efficiency represents a low, or conservative, limit of the third-harmonic efficiency.

Figure 5 | Slow-light enhancement of green light emission. a,b, Green light power as a function of coupled near-infrared peak power (P_{v}}{A_0}) as a function of the pump wavelength (c) and group index n_g (d). The error bars are derived from noise estimation on the CCD. The solid line in d represents a 1/n_g fit expected from the n_g-enhancement of the optical energy density. R² is a measure of goodness-of-fit.
wavelengths, respectively, to account for the effects of confinement by the slab and the material dispersion of silicon

\[n_{\text{eff}}(\omega) = \sqrt{\mu} \frac{\int_{\Omega} E^2 dV}{\int_{\Omega} |E|^2 dV} \]

where \(E \) is the electric field amplitude of the mode and \(\Omega \) is the volume of a unit cell of length \(a \) associated with the photonic-crystal waveguide. This yields an increase of \(A_n \) from 0.4 to 0.6 \(\mu m \) for increasing wavelength over the range studied.

Phase-matching considerations. One might expect that because the fundamental wavevector varies by \(\sim 10\% \) as the wavelength is tuned over a 10-nm range near 1,560 nm, it may influence the wavelength variation of the THG efficiency through the phase-matching term. In order to shed some light on the conclusion of our work that the observed enhancement in THG efficiency over the wavelength range studied is solely due to the group index \(v_n \) of the material, we find it useful to compare characteristic length scales in our device. In periodic structures, the phase mismatch \(\Delta k \) between the fundamental and the third-harmonic modes is defined as \(\pm m\omega L_{\text{coh}} \), where \(m \) is any reciprocal lattice vector. Therefore, \(\Delta k < \pi/a \) (where \(a \) is the photonic-crystal lattice constant) and the associated coherence (or beating) length between the two modes \(L_{\text{coh}} \) is thus always \(> 2a = 0.83 \mu m \). From the specific band structure of Fig. 2a we further expect the coherence length to be above 2 \(\mu m \). In silicon, because the absorption length of the third-harmonic light at 520 nm is \(\sim 1 \mu m < L_{\text{coh}} \), the influence of phase-matching variation on the THG efficiency in our device is expected to be negligible. Further, notwithstanding this argument or the experimental evidence, we investigated the wavelength dependence of phase-matching in our device by calculating it from the band structure, based on coupling to the third-harmonic mode discussed above, and assuming no losses at the third-harmonic wavelength, and we found that it was quite different to what was observed. Hence, for all of these reasons we believe these results conclusively demonstrate direct slow-light enhancement of this nonlinear process.

Received 23 October 2008; accepted 24 February 2009; published online 22 March 2009

References

Acknowledgements

This work was supported by the EU-FP6 Marie Curie Fellowship project SLIPPY, the EU-FP6 Network of Excellence ePIXnet and the EU-FP6 SPLASH project. Fabrication was carried out in the framework of the ePIXnet Nanostructuring Platform for Photonic Integration. We would also like to acknowledge the Australian Research Council (ARC) through its Federation Fellow, Centre of Excellence and Discovery Grant programs as well as the International Science Linkages program of the Australian Department of Education, Science and Technology.

Additional information

Reprints and permission information is available online at http://npg.nature.com/ reprintsandpermissions/. Correspondence and requests for materials should be addressed to C.M.