3.12. 2013

This module covers:
1) Sampling.
2) Aliasing.
3) Reconstruction.

Recommended reading material:
Section 6.1.

We have already discussed the main themes:

1) Sampling - \(x^{(m)} = x_a(nT)\).
2) Aliasing - if we don't sample above the Nyquist rate, higher frequencies will get mixed in erroneously.
3) We reconstruct \(x_a(t)\) as follows,

\[
x_a(t) = \sum_{n=-\infty}^{\infty} x(n) \frac{\sin(\frac{\pi}{T}(t-nT))}{\frac{\pi}{T}(t-nT)}
\]

But we only skimmed the surface. Today we will explain these topics in detail.
Let me first survey the material using the approach that was easiest for me when I was a student!

What is sampling? Instead of moving from continuous to discrete time, consider instead what happens when we multiply $x_A(t)$ by an impulse train, also known as a Dirac comb:

$$\Delta_T(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT).$$

What is this? A delta component of the form $\delta(t - nT)$ is a delta at location (time) nT. Because we have a summation over all n's, we have infinitely many deltas with spacing T between them.
Interestingly, the Fourier transform of an impulse train is also an impulse train. More specifically,

$$\mathcal{F}\{\delta(t)\} = \sum_{k=-\infty}^{\infty} \delta(t-kT).$$

we will derive this later, for now let's continue the narrative.

The impulse train is useful in understanding sampling, because if we multiply \(x_a(t) \) by \(\delta_T(t) \), we will get deltas at locations \(nT \) whose height (area) is \(x_a(nT) \). That is,

$$x_a(t) \delta_T(t) = x_a(t) \sum_{n=-\infty}^{\infty} \delta(t-nT)$$

$$= \sum_{n=-\infty}^{\infty} x_a(nT) \delta(t-nT).$$

Why? The \(\delta(t-nT) \) "picked off" \(x_a \) at time \(t=nT \).
Clearly the "information" in this product $x_a(t)\Delta T(t)$ is identical to that of the discrete time signal

$X(n) = x_a(nT)$.

To make this precise, let's look at their Fourier transforms:

$X(\omega) = \sum_{n=-\infty}^{+\infty} x(n) e^{-j\omega n}$

and in continuous time

$F\{x_a(t)\Delta T(t)\} = \int_{-\infty}^{\infty} x_a(t)\Delta T(t) e^{-j2\pi Ft} dt$

$= \int_{-\infty}^{\infty} \sum_{n=-\infty}^{+\infty} x_a(nT) \delta(t-nT) e^{-j2\pi Ft} dt$

$= \sum_{n=-\infty}^{+\infty} x_a(nT) e^{-j2\pi FTn}$
we see that the Fourier transforms resemble each other, where in discrete time we had \(w \), whereas in continuous time \(2\pi FT \).

Now that we agree that \(X(n) \) and \(X_a(t) \Delta T(t) \) contain the same information, let's understand intuitively what the Fourier transform is.

\[
F \{ X_a(t) \Delta T(t) \} = F\{X_a\} \ast F\{\Delta T\},
\]

let's look at this graphically.

where here the impulse train is the Fourier transform of \(\Delta T(t) \).

Recall that \(X(t) \ast \delta(t) = X(t) \), and similarly

\[
x(t) \ast \delta(t-nT) = x(t-nT).
\]
Therefore, \(X_a(F) * \left\{ \frac{\delta(F+k)}{k} \right\}_{k=-\infty}^{\infty} = X_a(F-k) \).

This is sampling.

Aliasing - graphically, we make copies of \(X_a(F) \) in the Fourier domain after multiplying them by \(\frac{1}{T} \) and shifting by \(\frac{k}{T} \), for all \(k \in \mathbb{Z} \).

![Graph showing sampling and aliasing](image)

Active learning

![Graph showing active learning](image)

1. \(T = \frac{1}{2} \). Please plot \(F \{ X_a(t) \Delta_T(t) \} \).
Part (1) involved sampling at the Nyquist rate. Let's now sample above and below.

(2) $T = \frac{1}{5}$. Please repeat the plot.

(3) $T = 1$. Ditto.
we now understand aliasing better than before; shifts of the Fourier transform will be copied around, and we don’t want those shifts to interfere with each other.

Real-world problem
Recall our AM system with bandwidth 10 kHz and carrier frequency 900 kHz. And noise:

```
\[ -910 \quad -890 \quad 890 \quad 910 \]
```

By sampling at 2 M samples/second, we have this copied with shifts of 2 MHz:

```
\[ -1M \quad -900K \quad 900K \quad 1M \]
```

Sadly, the squiggly noise also gets copied!
To prevent this, we put the AM signal through an **anti-aliasing filter** before sampling. This filter blocks frequencies above 1 MHz, and the noise is confined to the range \((-1 MHz, +1 MHz)\).
Reconstruction

Again, \(x(n) \) and \(x_a(t) \Delta \tau(t) \) are basically analogous from the point of view of what "information" they contain.

\(F \{ x_a(t) \Delta \tau(t) \} \) contains the Fourier response of the original signal — if sampled above the Nyquist rate — between frequencies \(-\frac{1}{\tau}\) and \(\frac{1}{\tau}\). The frequencies at higher frequencies are the result of the deltas having an infinite bandwidth.

To get back the signal of interest in the red box, we apply a low pass filter, which corresponds to convolution with a sinc function,

\[
x_a(t) = \sum_{n=-\infty}^{\infty} x(nT) \cdot \text{sinc}\left(\frac{\pi}{\tau}(t-nT)\right).
\]
Big picture

* Sampling — Multiply $X_a(t)$ by impulse train.

* Fourier response is convolution between $X_a(F)$ and $\mathcal{F}[\Delta(t)]$, which is itself an impulse train, resulting in copies of $X_a(t)$ being shifted around.

* Aliasing — you want to make sure that the shifts don’t overlap.

* Reconstruction — $X_a(F)$ appears in the lower frequencies of the Fourier response of the sampled signal $X_a(t)\Delta(t)$, just need to pick them off with a low pass filter.

And now, some details ...
Fourier transform of impulse train

The impulse train $\Delta_T(t)$ is periodic with period T. It can be written as:

$$\Delta_T(t) = \sum_{k=-\infty}^{\infty} C_k e^{j2\pi k \frac{t}{T}}$$

Let us compute the coefficients C_k:

$$C_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \Delta_T(t) e^{-j2\pi k \frac{t}{T}} dt$$

In the time range $(-\frac{T}{2}, \frac{T}{2})$ we have a single delta at time $t=0$, which is $\delta(t)$; this can be seen graphically.

$$C_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \delta(t) e^{-j2\pi k \frac{t}{T}} dt$$

$$= \frac{1}{T} \cdot e^{-j2\pi k \frac{0}{T}}$$

$$= \frac{1}{T}$$

where here the explanation is that a delta $\delta(t)$ picks off the value at $t=0$. More generally, $$\int_{-\frac{T}{2}}^{\frac{T}{2}} \delta(t) x(t) dt = x(0),$$

where here $x(t) = e^{-j2\pi k \frac{t}{T}}$.
Recall that a Fourier series can also be represented as deltas. That is, \(c_k \) will be a delta at frequency \(\frac{k}{T} \) with area \(c_k \), meaning \(\delta(F - \frac{k}{T}) \cdot c_k \).

In our example,
\[
F \{ \Delta \tau(t) \} = \sum_{k=-\infty}^{\infty} \frac{1}{k} \delta(F - \frac{k}{T}).
\]
Example 6.1.1

\[X_{\text{a}(t)} = \cos(2\pi F_0 t) = \frac{1}{2}(e^{j2\pi F_0 t} + e^{-j2\pi F_0 t}) \]

Now let's sample this signal at rate \(F_s < 2F_0 \).

To keep it simple, \(F_s = 1\frac{1}{2}F_0 \).

If we reconstructed (attempted to) \(X_{\text{a}(t)} \), the lowpass filter would yield the range \((-\frac{3}{4}F_0, +\frac{3}{4}F_0)\), because \(\frac{3}{4}F_0 = \frac{1}{2}F_s \). But within this range there are erroneous deltas, owing to aliasing.
Example 6.1.2

\[X_a(t) = e^{-A|t|} \]
\[X_a(F) = \frac{2A}{A^2 + (2\pi F)^2}. \]

This signal is *not* bandlimited.

![Graph showing the signal in the time domain and the frequency domain.]

Why? Because the peak of the exponent, which we emphasize in red, contains a discontinuity, and discontinuities (in the derivative in this case) have infinite bandwidth.

Therefore, no matter how fast we sample there will always be some aliasing. But in this example \(X_a(F) \) decays quickly enough at high frequencies to make the aliasing manageable—i.e., we sample reasonably fast.