Question 1 (transfer functions)
Consider the filter,
\[y(n) = 0.8y(n-1) + ax(n). \]

(a) Calculate the transfer function, \(H(\omega) = Y(\omega)/X(\omega). \)

Solution: Taking the Fourier transform of the difference equation, \(Y(\omega) = 0.8Y(\omega)e^{-j\omega} + aX(\omega). \) Rearranging terms, \(Y(\omega)[1 - 0.8e^{-j\omega}] = aX(\omega), \) and so
\[H(\omega) = \frac{Y(\omega)}{X(\omega)} = \frac{a}{1 - 0.8e^{-j\omega}}. \]

(b) Determine \(a \) so that \(H(0) = 1. \)

Solution: We want
\[1 = H(0) = \frac{a}{1 - 0.8e^{-j\omega}} = \frac{a}{1 - 0.8 \cdot 1} = \frac{a}{0.2}. \]
To satisfy this constraint, \(a = 0.2. \)

(c) Compute a frequency, \(\omega, \) for which \(|H(\omega)|^2 = \frac{1}{21}. \) (If you are unsure about the value of \(a, \) you may assume that \(a = -0.2). \)

Solution: We want
\[|H(\omega)|^2 = \left| \frac{0.2}{1 - 0.8e^{-j\omega}} \right|^2 = \frac{0.2^2}{|1 - 0.8 \cos(\omega) - j0.8 \sin(\omega)|^2} = \frac{0.2^2}{1 + 0.64 \cos^2(\omega) - 2 \cdot 0.8 \cos(\omega) + 0.64 \sin^2(\omega)} = \frac{0.2^2}{1.64 - 1.6 \cos(\omega)} = \frac{1}{21}. \]
Because the numerator is $0.2^2 = 0.04$, the denominator must be 21 times larger, which is 0.84,

$$1.64 - 1.6 \cos(\omega) = 0.84.$$

Therefore, $\cos(\omega) = 0.5$, meaning that $\omega = \pm \pi/3$. Finally, using the “you may assume that” route, the numerator is $(-0.2)^2 = 0.04$, which is the same as before. Therefore, $\omega = \pm \pi/3$.

(d) Is this filter lowpass, bandpass, or highpass? Make sure to justify your answer.

Solution: In the z domain, the transfer function is $H(z) = \frac{0.2}{1-0.8z^{-1}} = \frac{0.2z}{z-0.8}$ with a zero at the origin ($z = 0$) and pole at 0.8. The pole at 0.8 is close to $\omega = 0$ on the unit circle ($z = e^{j\omega} = 1$), hence it amplifies lower frequencies. This is a lowpass filter.
A moving average filter is used to reduce noise and smooth out data from one value to the next. We define a moving average filter as

$$y(n) = \frac{1}{N+1}(x(n) + x(n-1) + \ldots + x(n-N)).$$

(Note that this definition is somewhat different from that in the slides.) Let $N = 3$. The filter averages over $N + 1 = 4$ samples, and the relationship between the input $x(n)$ and output $y(n)$ is given by the difference equation,

$$y(n) = \frac{x(n) + x(n-1) + x(n-2) + x(n-3)}{4}.$$

(a) Express the impulse response of the averaging filter (use $N = 3$). Plot the impulse response.

Solution: We can see from the difference equation that $h(n) = \frac{1}{4}$ for $n \in \{0, 1, 2, 3\}$, else $h(n) = 0$. This impulse response can be expressed as $h = [\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}]$. A plot of the impulse response would label the horizontal and vertical axes, and also provide a sense of scale (labeling $n \in \{0, \ldots, 3\}$ and $h(n) = \frac{1}{4}$).

(b) What is the transfer function, $H(z)$, in the z-domain? Please include the region of convergence.

Solution: The transfer function obeys

$$H(z) = \frac{1}{4}[1 + z^{-1} + z^{-2} + z^{-3}].$$

The limitation in terms of ROC is when z cannot be inverted, meaning $z = 0$. Therefore, $ROC = \{z \in \mathbb{C} : z \neq 0\}$.

(c) What is the output of the moving average filter when the input is $x(n) = \cos(\pi n/2 + 0.3)$? (Hint: your answer should be simple, for example $y(n) = 0.5^n$, and not a complicated formula.)

Solution: Note that $x(n)$ is a sinusoidal input. Therefore, $y(n)$ is amplified by $H(\omega)$, where $\omega = \pi/2$,

$$H(\pi/2) = H(z = \exp(j\pi/2) = j) = \frac{1}{4}[1 + j^{-1} + j^{-2} + j^{-3}] = 0.$$

We can see that $x(n)$ is multiplied by zero, hence $y(n) = 0$.
A resonance filter boosts frequencies by placing a pair of complex conjugate poles near the unit circle. The angular location where the poles are placed, \(\theta \), and distance from the origin, \(r \), control what frequencies get boosted and by how much. In this question, we will design a resonance filter and discuss some of its properties.

(a) We place 2 poles at locations \(p_1 = r \exp(j\theta) \) and \(p_2 = r \exp(-j\theta) \). The poles are placed at conjugate locations in order for the impulse response to be real-valued. We also place two zeros at locations \(z_1 = -1 \) and \(z_2 = +1 \). In this part, you will help us derive \(H(z) = Y(z)/X(z) \), the transfer function of the resonance filter. In the derivation below, \(\alpha \), \(\beta \), and \(\gamma \) are missing; please specify these expressions. (For your convenience, these missing parts are underlined and in red font. Note that \(\alpha \) is missing twice.)

\[
H(z) = \frac{G(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)}
\]
\[
= \frac{G}{(z - r \exp(j\theta))(z - r \exp(-j\theta))}
\]
\[
= \frac{G}{z^2 - 2rz \cos(\theta) + \gamma}
\]

where \(G \) is a gain constant.

Solution: The missing expresions are

\[
\alpha = z^2 - 1,
\]
\[
\beta = rz(\exp(j\theta) + \exp(-j\theta)),
\]
\[
\gamma = r^2.
\]

(b) Explain possible advantages of placing the zeros at locations \(z_1 = -1 \) and \(z_2 = +1 \).

Solution: The locations of the zeros, \(z_1 \) and \(z_2 \), correspond to frequencies \(\omega_1 = 0 \) and \(\omega_2 = \pi \) on the unit circle. These locations ensure that the filter rejects high (\(\omega_2 \)) and low (\(\omega_1 \)) frequencies well.
(c) Instead of $z_1 = -1$ and $z_2 = +1$, an alternative is to place both zeros at the origin, i.e., $z_1 = z_2 = 0$. The advantage of this approach is that all points along the unit circle are equi-distant from the origin, hence $H(\omega)$ is easier to analyze. Explain what must change in the derivation of part (a).

Solution: Instead of $z^2 - 1$, we now have z^2 in the numerator,

$$\hat{H}(z) = G \frac{z^2}{z^2 - 2rz \cos(\theta) + r^2}.$$

(d) The gain constant, G, was not specified in part (a). Using the transfer function from part (a) (not the modified one from part (c)), compute G that ensures that $|H(\omega = \pi/2)| = 1$. In your calculation, use the values $r = 0.8$ and $\theta = \pi/2$. (If you are unsure about $H(z)$ from part (a), you may assume that $H(z) = G \frac{z^2 + 3}{z^2 + z \cos(\theta) + 2r}$.)

Solution: We want

$$\left| \frac{G \frac{z^2 - 1}{z^2 - 2rz \cos(\theta) + r^2}}{z^2 - 1} \right| = 1.$$

Moreover, $\omega = \pi/2$ corresponds to $z = \exp(j\pi/2) = j$, and so

$$|G| = \left| \frac{z^2 - 2rz \cos(\theta) + r^2}{z^2 - 1} \right|$$

$$= \frac{|(0.8^2 - 1) + j(-2 \cdot 0.8 \cos(\pi/2))|}{| - 1 - 1 |}$$

$$= \frac{\sqrt{(1 - 0.8^2)^2 + (2 \cdot 0.8 \cdot 0)^2}}{2}$$

$$= \frac{\sqrt{1 - 0.64)^2}}{2}$$

$$= \frac{1 - 0.64}{2}$$

$$= 0.18.$$

For the “you may assume” part,

$$1 = \left| G \frac{z^2 + 3}{z^2 + z \cos(\theta) + 2r} \right|.$$

Therefore,

$$|G| = \left| \frac{z^2 + z \cos(\theta) + 2r}{z^2 + 3} \right| = \left| \frac{-1 + j \cdot 0 + 2 \cdot 0.8}{-1 + 3} \right| = \left| \frac{-1 + 1.6}{2} \right| = 0.3.$$