ECE 421
Introduction to Signal Processing

Dror Baron
Associate Professor
Dept. of Electrical and Computer Engr.
North Carolina State University, NC, USA
What’s ECE421?
Replace analog processing by digital

- Signal processing can be performed in analog
 - An analog signal processing block diagram is shown.

- Or digital
 - Analog to digital conversion (A/D)
 - Digital signal processing (DSP)
 - Digital to analog conversion (D/A)
Why replace analog by digital?

- Both systems yield *identical* outputs!!!
 - Technical conditions...

- But DSP is cheaper, more robust, everything can be stored, performance is improving all the time...
Frequency perspective

- Electrical engineers often “think” about signals in both time/spatial domain and frequency domain
- Why?
Frequency perspective

- Electrical engineers often “think” about signals in both time/spatial domain and frequency domain

- \textit{Linear time invariant} (LTI) systems
 - Linear/superposition: $H(x_1+x_2) = H(x_1) + H(x_2)$
 - Time invariant: $\text{shift}(H(x)) = H(\text{shift}(x))$

- Many systems are well-approximated as LTI
Frequency perspective

- Electrical engineers often “think” about signals in both time/spatial domain and frequency domain

- Property #1 – sinusoids processed by LTI systems are still sinusoids, they are merely amplified somehow

- Take several sinusoids at the input
 - Linear system \rightarrow output is superposition of individual outputs
 - Each sinusoid is amplified \rightarrow superposition of amplified sinusoids

- Input superpositions of sinusoids \rightarrow “easy” to understand output
Frequency perspective

- Electrical engineers often “think” about signals in both time/spatial domain and frequency domain

- Property #2 – LTI systems can be represented as convolution
 - Convenient to work with convolution, especially because in the frequency domain it boils down to multiplication

- Bottom line: LTI systems appear in many engineering systems & mathematically tractable frequency perspective
Motivation for ECE421
Real story

- Microwave radio links used for “last mile” communication
 - Typical use - link base stations in rural areas without fiber network
 - Data rates typically tens/hundreds Mbps

- Before late 90’s, microwave link modems were analog
- Instructor worked at startup that designed digital modems for microwave links
 - 5x reduction in power → less power transmitted (cleaner EM spectrum) or can use less hardware
Applications

- **Deblurring** – handshake introduce blurring artifacts
 - Observed image = true image * kernel + noise
 - Goal: estimate true image from noisy observations

- **Seismic** exploration/visualization/imaging
 - Sensors send vibrations into ground, other sensors measure vibrations
 - Goal is to estimate geological structure
 - Useful to decide where to drill for oil, locate earthquake zones, ...

- **Medical imaging** (replace “ground” by “patient”)

- Communications (phones), image processing (cameras), video, defense (radar, signals intelligence), finance...
Things you’ll learn about

- **AM radio** (example revisited during course)
 - Narrow band signal (~10 KHz) modulated at carrier (~1 MHz)
 - Will learn to sample at ~20 K instead of ~2M samples/sec

- **Multipath in mobile phones** (discussed as digital filter)
 - Urban environment with comm signal bouncing between buildings
 - Can perform “echo cancelation” with digital processing; unrealistic with analog hardware due to changing nature of environment

- **Sneak peak at compressed sensing**
 - Modern signal acquisition approach
 - State of art algos often allow 10x reduction in sensing rates
Matlab example

- Start with superposition of two sinusoids
- Add noise

- In Fourier domain, coefficients corresponding to two sinusoids are bigger than other noise-induced coeffs

- Denoising approach – truncate small Fourier coeffs

- Matlab script available on course webpage
Administrative Details
Introduction

- Many resources on course webpage
 - Syllabus - updated
 - Tentative schedule – updated
 - Slides & handouts & supplements

- Webwork – homeworks & quizzes
 - Are quizzes good in online format?

- Projects

- Grade structure
Some details

- **Prereqs:**
 - ECE 301 (linear systems)
 - Matlab – tutorials available from webpage

- **Textbook**
 - Proakis & Manolakis
 - Any recent edition should be fine
More details

- Change in grade structure:
 - Less weight on Webwork (intended to motivate you)
 - More weight on projects
 - More tests → smaller per-test weight

- Occasional “active learning” exercises in class
 - Normal semester: students discuss in pairs/triples
 - After 2-3 minutes I poll responses / volunteers / etc.
 - Online semester: I’ll give you time to pause video
 - Solutions on course webpage 😊
Expectations

- ECE 421 more open ended than some other courses
 - Less emphasis plugging numbers into formulas
 - More emphasis on deriving new results
 - Evaluating trade-offs critically
 - Applying knowledge to problems you haven’t seen before
 - More projects

- This style can build strong foundation in signal processing
Signals and Systems

[Reading material: Sections 1.1-1.4]
Signals

- *Signal* – function of time (or space)
 - Example: \(x_1(t) = \sin(10\pi t) \)
- Real-world signals are complicated
- Major theme of course – can express some signals compactly/sparsely as superpositions of sinusoids

- Types of signals
 - *Multidimensional* – function of multiple inputs (e.g., image)
 - *Multichannel* – has several outputs (e.g., complex valued signal)
 - *Continuous time* (analog also features continuous amplitude)
 - *Discrete time*
 - *Digital* - discrete time and discrete valued
Active learning (based on Problem 1.1 in textbook)

- Classify signals below as: one/multi dimensional; single/multi channel; continuous/discrete time; digital/analog amplitude
 - Closing prices of stocks?
 - Color movie?
 - Weight/height measurements of child every month?

- Solution on webpage
Systems

- **System** - device that responds to stimulus

- Signals are inputs and outputs of systems

- Can have various properties:
 - Linear or non-linear
 - Causal or anti-causal
 - Random or deterministic (we focus on latter)
 - Time invariant or not

- **Digital systems** can be implemented in an algorithm on a computer

- We focus on digital processing, which can emulate analog
Frequencies and Periodicity
Continuous time sinusoids

- **Continuous time sinusoid**: $x_a(t)=A\cos(\Omega t+\theta)$
 - A – *amplitude*
 - Ω - *frequency* (radians per unit time)
 - t – *time*
 - θ - *phase*

- Can express w/cycles per unit time, $x_a(t)=A\cos(2\pi Ft+\theta)$

- Cont. time sinusoids periodic w/period $T_p=1/F$

- Increasing F → shorter period, faster oscillations
Discrete time sinusoids

- **Discrete time sinusoid**: $x(n) = A \cos(\omega n + \theta)$
 - ω - frequency (radians per sample)
 - n – discrete time index

- Can express w/cycles per sample, $x(n) = A \cos(2\pi fn + \theta)$

- Summary of notation for frequencies:

<table>
<thead>
<tr>
<th></th>
<th>Radians</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous time</td>
<td>Ω</td>
<td>F</td>
</tr>
<tr>
<td>Discrete time</td>
<td>ω</td>
<td>f</td>
</tr>
</tbody>
</table>
What is periodicity in discrete time?

- Discrete time sinusoid periodic if f is rational number

- Consider $s(t) = e^{j\Omega t}$ with period T_p

- Let’s accelerate the signal by factor k: $s_k(t) = e^{jk\Omega t}$

- New signal $s_k(t)$ periodic with period T_p/k
 - $s_k(t) = s_k(t + lT_p/k)$ for integers k, l
Example (based on Problem 1.2 in textbook)

- What’s the fundamental period of the following signals?
 - \(\cos(0.01\pi n) \)?
 - \(\cos(30\pi n/105) \)?
 - \(\sin(3n) \)?
Tougher example

- What’s the fundamental period of $x(n)=0.1\cos\left(\frac{65\pi n}{40}\right)+12\sin\left(\frac{37\pi n}{4}\right)$?
Aliasing

- Discrete time sinusoids with frequencies \(\omega \) separated by \(2\pi \) radians per sample are indistinguishable – called aliasing
 - Or if separated by 1 cycle per sample; or \(\omega = 2\pi k \) for integer \(k \)

- Example that demonstrates aliasing
 - \(x_1(t) = \sin(0.01\pi t) \), \(x_2(t) = \sin(2.01\pi t) \)
 - \(x_1 \) has period of 200, because \(x_1(200+t) = x_1(t) \)
 - \(x_2 \) has period \(2/2.01 \)
 - Sample with sampling frequency \(F_s = 1 \) \(\Rightarrow x_1(n) = \sin(0.01\pi n) \)
 - Similarly, \(x_2(n) = \sin(2.01\pi n) = \sin(2\pi n + 0.01\pi n) = \sin(0.01\pi n) = x_1(n) \)

- Visual demos of aliasing:
 http://www.youtube.com/watch?v=jHS9JGkEOmA
A/D and D/A Conversion
Big picture

- Many real-world signals are analog
 - Speech signals, images, video, seismic data, climate measurements, ...

- To enjoy benefits of DSP (reliable, cheap, fast, reproducible,...)
 - Convert from analog to digital (A/D)
 - Perform digital signal processing
 - Convert from digital back to analog (D/A)

- Will soon see when this is equivalent to analog processing
A/D conversion

- **Analog to digital (A/D) conversion** comprised of three parts

 - **Sampling** – $x(n) = x_a(nT)$ with sampling interval T
 - Sampling involves analog hardware
 - Non-uniform sampling can be used but complicated

 - **Quantization** – truncate/round $x(n)$ to discrete valued $x_q(n)$
 - Uniform quantizers $x_q(n) = \lfloor x(n)/\Delta \rfloor$ commonly used
 - $\lfloor \cdot \rfloor$ rounds down; quantizer step size Δ
 - Non-uniform quantizers can use fewer levels

 - **Coding** – translate discrete valued $x_q(n)$ to bits
 - Data compression allocates fewer bits to common quantization levels, more bits to rare ones (just like Morse code)
D/A conversion

- **How can digital to analog (D/A) converters interpolate between samples?**
 - **Zero order hold** – maintain $x(n)$ at output for T time
 - Results in staircase-like pattern at output
 - **First order hold** “connects the dots”
 - Output becomes smoother (continuous)
 - Will see later what this means in frequency domain

- **Higher order interpolation** can be used
 - Will see that sinc is theoretically appealing
Sampling

- Sampling - \(x(n) = x_a(t = nT) \)
 - Sampling interval \(T \)
 - Sampling rate \(F_s = \frac{1}{T} \)
 - Sampling times \(t = nT = n/F_s \)

- Consider sampling a cosine, \(x_a(t) = A \cos(2\pi F t + \theta) \)
 \[x(n) = x_a(t = nT) = A \cos(2\pi n F / F_s + \theta) \]

- Contrast to discrete cosine, \(x(n) = A \cos(2\pi n F / F_s + \theta) \) \(\Rightarrow f = F / F_s = FT \)
 - Remark: because \(\Omega = 2\pi F \) and \(\omega = 2\pi f \) \(\Rightarrow \omega = \Omega T \)

- Want \(f \in (-0.5, 0.5) \), requires \(F / F_s \in (-0.5, 0.5) \)
- Need \(-0.5F_s < F < 0.5F_s \) or \(F_s > 2|F| \) to avoid aliasing
Example (based on Example 1.4.2 in textbook)

- Consider $x_a(t)=3\cos(100\pi t)$

1. What’s minimum sampling rate required to avoid aliasing?

2. Suppose $F_s=200$ Hz, what’s the discrete time signal?

3. Suppose $F_s=75$ Hz, what’s the discrete time signal?
The Sampling Theorem
The sampling theorem

- Consider *band limited* signal; all frequencies are below F_{max}
- Can find $F_s=1/T$ large enough such that $F_s>2F_{\text{max}}$
 - Every analog F can be determined from corresponding discrete f

Theorem: [Shannon, Nyquist, Whittaker, Kotelnikov]
If highest frequency in $x_a(t)$ is $F_{\text{max}}=B$, and we sample at rate $F_s>2F_{\text{max}}=2B$, then $x_a(t)$ can be recovered **perfectly**,

$$x_a(t)=\sum_n x_a(n/F_s)g(t-n/F_s),$$

where $g(t)=\sin(2\pi Bt)/(2\pi Bt)$

- F_s called *Nyquist rate*
- $g(t)$ involves non-causal sinc interpolation \rightarrow not implementable
Consider $x_a(t) = 3\cos(2000\pi t)+5\sin(6000\pi t)+10\cos(12000\pi t)$

1. What is the Nyquist rate?

2. We use $F_s = 5000$ Hz, what is the discrete time signal?

3. What analog signal is obtained with ideal sinc interpolation?
Discrete Time Signals and Systems
[Reading material: Sections 2.1-2.5]
General comments about this material

- DSP can help emulate end to end analog systems ➔ focus on discrete time signals & systems

- Much of this material should be review ➔ fast paced

- Our emphasis will be notations and terminology used in book

- Let’s cover this quickly and move to new material 😊
Notation for discrete time signals

- Discrete time signal can be expressed in different ways

- Function, \(x(n) = n + 13 \)

- Table representation

<table>
<thead>
<tr>
<th>n</th>
<th>...</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>x(n)</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Sequence \(x(n) = \{\ldots, 0, 0, 1, 4, 2, 1, 0, 0, \ldots\} \)
 - Underline (arrow in book) points to time origin (n=0)
Some standard discrete time signals

- Unit impulse sequence $\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & \text{else} \end{cases}$

- Unit step $u(n) = \begin{cases} 1 & n \geq 0 \\ 0 & n < 0 \end{cases}$

- Unit ramp $u_r(n) = nu(n) = \begin{cases} n & n \geq 0 \\ 0 & n < 0 \end{cases}$

- Exponent $x(n) = a^n$
 - Can be complex, can write
 $$(re^{j\Phi})^n = r^n e^{j\Phi n} = r^n [\cos(\Phi n) + jsin(\Phi n)]$$
More definitions

- **Energy** $E = \sum_{n=-\infty}^{+\infty} |x(n)|^2$
 - Often called squared-ℓ_2 norm, $||x||_2 = E^{0.5}$

- **Power** $P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{+N} |x(n)|^2$
 - Average energy per sample

- Periodic signal $x(n+N) = x(n)$, $\forall n$

- **Symmetric** (even) signal $x(-n) = x(n)$, $\forall n$

- **Antisymmetric** (odd) signal $x(-n) = -x(n)$
 - Note that $x(0) = -x(0) = 0$
Operations on discrete time signals

- *Time shift* $x(n-k)$

- *Folding or reflection* $x(-n)$

- *Time scaling or down-sampling* $x(\mu n)$ for integer μ

- *Addition or sum* $y(n)=x_1(n)+x_2(n)$

- *Product* $y(n)=x_1(n)x_2(n)$

- *Scaling* $y(n)=Ax(n)$
Discrete time systems

- Discrete time systems operate on discrete time signals

- Input $x(n)$ transformed to output $y(n)$

 $$y(n) = T[x(n)]$$

 - T for transformation
Sketches of systems

- Can sketch discrete time systems using components below

\[
x_1(n) \quad y(n) = x_1(n) + x_2(n)
\]

\[
x_1(n) \quad y(n) = Ax(n)
\]

\[
x_1(n) \quad y(n) = x_1(n)x_2(n)
\]

- Sometimes want to add memory to system

\[
x(n) \quad y(n) = x(n-1)
\]
Connecting systems

- **Cascade**

 \[x(n) \xrightarrow{T_1} T_2 \xrightarrow{} y(n) = T_2[T_1[x(n)]] \]

- **Parallel connection**

 \[x(n) \xrightarrow{T_1} T_2 \xrightarrow{} y(n) = T_1[x(n)] + T_2[x(n)] \]
Types/Properties of Discrete Time Systems
Types of systems

- Static – memoryless
- Dynamic – contains memory
- Time invariant – $y(n)=T[x(n)] \rightarrow y(n-k)=T[x(n-k)], \forall x(n), k$
 - Suffices to prove for $k=1$
- Time variant – not invariant (example coming up)
Example time variant system (see supplement)

- System \(y(n) = nx(n) \)

- Input \(x(n) = \delta(n) \)
 - \(n \neq 0: x(n) = 0 \rightarrow y(n) = 0 \)
 - \(n = 0: x(n) = 1 \rightarrow y(n) = 0 \cdot 1 = 0 \)
 - *Output always zero* (even if we apply time shift by \(k \), any \(k \))

- Input \(x(n) = \delta(n-k) \)
 - *it’s one when \(n = k *)
 - \(n \neq k: x(n) = 0 \rightarrow y(n) = 0 \)
 - \(n = k: x(n) = 1 \rightarrow y(n) = k \cdot 1 = k \)
 - *Output not always zero*

- **Key point**: \(k \)-shifted input doesn’t yield \(k \)-shifted output
More types of systems

- **Linear** – $T[ax_1(n)+bx_2(n)]=aT[x_1(n)]+bT[x_2(n)]$
 - Also called *superposition*
 - Must hold for *all* scalars a, b, signals $x_1(n)$, $x_2(n)$
 - Suffices to prove $T[x_1(n)+x_2(n)]=T[x_1(n)]+T[x_2(n)]$ and $T[ax(n)] = aT[x(n)]$

- **Causal** – output depends only on present/past inputs
 - Also have *anti-causal* (depends on present/future), *non-causal*
Stable Discrete Time Systems
Stability

- Intuitively, want “well behaved” system
- Various types of stability possible

- *Bounded input bounded output* (BIBO)
 - Common way to evaluate stability
 - Output must be bounded for *all* bounded inputs
Example non-BIBO system (see supplement)

- System \(y(n) = y(n-1) + x(n) \)

- Input \(x(n) = u(n) \)
 - \(n < 0: y(n) = 0 \)
 - \(n = 0: y(0) = y(-1) + x(0) = 0 + 1 = 1 \)
 - \(n = 1: y(1) = y(0) + x(1) = 1 + 1 = 2 \)
 - \(n = 2: y(2) = y(1) + x(2) = 2 + 1 = 3 \)
 - ...
 - Can show \(y(n) = n + 1 \) for \(n \geq 0 \)
 \(\rightarrow y(n) = u_r(n) + u(n) \)
 ramp + step

- **Key point**: bounded input & unbounded output
 \(\rightarrow \) not BIBO
Same example another input

- System $y(n)=y(n-1)+x(n)$

- Input $x(n)=\delta(n)$ \textit{impulse instead of step}
 - $n<0$: $y(n)=0$
 - $n=0$: $y(0)=y(-1)+x(0)=0+1=1$
 - $n=1$: $y(1)=y(0)+x(1)=1+0=1$
 - $n=2$: $y(2)=y(1)+x(2)=1+0=1$
 - Can show $y(n)=1$ for $n \geq 0 \Rightarrow y(n)=u(n)$

- Bounded input (impulse) & bounded output (step)

- BIBO unstable system \textit{can} have bounded output
 - Only need \textit{one} bad input to demonstrate non-BIBO
Example BIBO system (modified system)

- We saw that $y(n)=y(n-1)+x(n)$ not BIBO stable
- Slightly modified system: $y(n)=0.5y(n-1)+x(n)$

- Input $x(n)=u(n)$ step
 - $n<0$: $y(n)=0$
 - $n=0$: $y(0)=0.5y(-1)+x(0)=0+1=1$
 - $n=1$: $y(1)=0.5y(0)+x(1)=0.5+1=1.5$
 - $n=2$: $y(2)=0.5y(1)+x(2)=0.75+1=1.75$
 - Can show $y(n)=2-0.5^n$ for $n \geq 0$

- Modified system can be shown to be BIBO stable
Linear Time Invariant (LTI)
Discrete Time Systems
Linear time invariant (LTI) systems

- Many real-world systems can be approximated as LTI
- Convenient mathematical properties
- Can be expressed as convolution

\[y(n) = \sum_{k=-\infty}^{+\infty} x(k)h(n - k) \]

- System H coincides to impulse response h(·)
- h called convolution kernel
- Can be computed as impulse response
Example impulse responses

- Recall two systems:
 - $H_1: y(n) = y(n-1) + x(n)$
 - $H_2: y(n) = 0.5y(n-1) + x(n)$

- First system:
 - Already saw impulse response $h_1(n) = u(n)$ step function

- Second system:
 - Let’s show $h_2(n) = 0.5^n u(n)$
Properties of convolution

- **Identity operator**: \(x(n) * \delta(n) = x(n) \)
- **Time shift**: \(x(n) * \delta(n-k) = x(n-k) \)
- **Commutative**: \(x(n) * h(n) = h(n) * x(n) \)
- **Associative**: \([x(n) * h_1(n)] * h_2(n) = x(n) *[h_1(n) * h_2(n)] \)
- **Distributive**: \(x(n) *[h_1(n)+h_2(n)] = x(n) * h_1(n) + x(n) * h_2(n) \)
Properties of LTI systems

- LTI system H is causal iff (if and only if) $h(n)=0$ for $n<0$

- LTI system H is BIBO stable iff $\sum_{k=-\infty}^{\infty} |h(k)| < \infty$

- *Finite impulse response* (FIR) systems have finite duration

- *Infinite impulse response* (IIR) – unbounded duration; can sometimes be implemented recursively
Recall two systems:

- $H_1: y(n) = y(n-1) + x(n)$
- $H_2: y(n) = 0.5y(n-1) + x(n)$

First system: $h_1(n) = u(n)$

- $\sum_{k=-\infty}^{\infty} |h_1(k)|$ is infinite \rightarrow not stable

Second system: $h_2(n) = 0.5^n u(n)$

- $\sum_{k=-\infty}^{\infty} |h_2(k)| = 2 \rightarrow$ BIBO stable
Implementing Discrete Time Systems

[Reading material: Section 2.5]
Difference equations

- Common type of LTI system (convention: $a_0=1$)
 \[
 \sum_{k=0}^{N} a_k y(n - k) = \sum_{k=0}^{M} b_k x(n - k)
 \]

- Can be solved by splitting into components
 - *Zero input response* – reaction to initial conditions from feedback of \{a\} coefficients
 - *Zero state response* – assumes zero initial conditions
Direct form I

- Difference equation yields following implementation
 - $\sum_{k=0}^{N} a_k y(n - k) = \sum_{k=0}^{M} b_k x(n - k)$
 - $v(n) = b_0 x(n) + b_1 x(n-1) + \ldots$
 - $y(n) = v(n) - a_1 y(n-1) - a_2 y(n-2) - \ldots$

- Known as direct form I
Direct form II

- Left and right sides are commutative → can swap sides
 \[x(n) \cdot L(n) \cdot R(n) = x(n) \cdot R(n) \cdot L(n) \]

- Known as *direct form II*

- Note savings in memory units; they often consume resources (space / power)
Correlation

[Reading material: Section 2.6]
Motivation

- *Correlation* measures similarity between signals
 - Often used with signals that feature randomness
 - Book takes deterministic (non-random) viewpoint

- Radar application/motivation
 - Signal x is transmitted
 - Reflected off target with delay D, attenuation a
 - Additive noise $w(n)$
 - $y(n) = ax(n-D)+w(n)$

- Correlation tells us how similar y is to versions of x delayed by different amounts
Revisiting real story

- Key component in microwave link modems is measuring delay between devices
- Radios have slightly different clocks \Rightarrow delay D varies
- Want to sample incoming communication signal “right” time
 - Sample at correct time \Rightarrow interpolation (e.g. sinc) works well
 - Incorrect synchronization \Rightarrow interpolation yields garbage

- Synchronization approach
 - Periodically transmit sequence with spiky correlation properties
 - This is (small) overhead...
 - Receiver occasionally sees spike
 - Receiver can estimate delay D relatively well
Matlab example (visualizing correlation)

- Take signal x and add low-amplitude noise
 - Scatter plot resembles line

- Noise amplitude = signal amplitude
 - Elliptical plot

- Large amplitude noise
 - Circular plot → uncorrelated

- Matlab script available on course webpage
Correlation and its Properties
Some definitions

- **Cross correlation**, $r_{xy}(l) = \sum_n x(n)y(n-l)$
 - Can be re-expressed, $r_{xy}(l) = \sum_n x(n+l)y(n)$

- Let’s swap roles of sequences x and y
 - $r_{yx}(l) = \sum_n y(n)x(n-l) = \sum_n y(n+l)x(n) = r_{xy}(-l)$

- **Autocorrelation**
 - Correlation between sequence and itself
 - $r_{xx}(l) = \sum_n x(n)x(n-l) = \sum_n x(n+l)x(n)$
 - Due to symmetry, $r_{xx}(l) = r_{xx}(-l) \rightarrow$ even function
Active learning

- Consider \(x(n) = \begin{cases}
2, & n = 0 \\
1, & n = 1 \\
0, & \text{else}
\end{cases} \)

- Compute \(r_{xx}(l) \) for:
 - \(l=0 \)
 - \(l=-1 \)
 - \(l=+1 \)
 - Other
Properties

- Sum of squares of sequences expressed using correlation

- Will show $\sum_n [ax(n) + by(n-l)]^2 = a^2 r_{xx}(0) + 2ab r_{xy}(l) + b^2 r_{yy}(0)$
Correlation and energy

- Relation to energy: $r_{xx}(0) = E_x$, $r_{yy}(0) = E_y$

- Energy is non-negative $\Rightarrow \sum_n [ax(n)+by(n-l)]^2 \geq 0$
 - $r_{xx}(0)(a/b)^2 + 2r_{xy}(l)(a/b) + r_{yy}(0)(1) \geq 0$
 - Will use quadratic eq. to show $|r_{xy}(l)| \leq \sqrt{r_{xx}(0)r_{yy}(0)} \leq \sqrt{E_xE_y}$
Normalized correlation

- Correlation greatest for $x(n)=y(n) \Rightarrow |r_{xx}(l)| \leq r_{xx}(0) = E_x$

- Normalized autocorrelation, $\rho_{xx}(l) = \frac{r_{xx}(l)}{r_{xx}(0)} \in [-1,1]$

- Normalized cross-correlation, $\rho_{xy}(l) = \frac{r_{xy}(l)}{\sqrt{E_x E_y}} \in [-1,1]$

- Revisit active learning; compute $\rho_{xx}(1)$
Correlation in LTI systems

- Cross correlation, \(r_{xy}(l) = \sum_n x(n)y(n-l) = \sum_n x(n+l)y(n) \)
- Flipped version, \(\tilde{y}(n) = y(-n) \)
- Express as convolution: \(r_{xy}(l) = \{x \ast \tilde{y}\}(l) \)

- Consider LTI system \(H \) with input \(x \), output \(y \)

\[
x(n) \quad \xrightarrow{H} \quad y(n)
\]

\[
r_{yx} = y \ast \tilde{x} = (h \ast x) \ast \tilde{x} = h \ast (x \ast \tilde{x}) = h \ast r_{xx}
\]

- Similarly, \(r_{xy} = \tilde{h} \ast r_{xx} \)

\[
r_{yy} = y \ast \tilde{y} = (h \ast x) \ast (\tilde{h} \ast \tilde{x}) = (h \ast \tilde{h}) \ast (x \ast \tilde{x}) = r_{hh} \ast r_{xx}
\]

- Useful for power spectrum in communications systems
Computation of correlation

- Cross correlation expressed as convolution, $r_{xy} = x \ast \tilde{y}$

- Will see how fast Fourier transform (FFT) provides fast computation of convolution

- Correlation typically computed via FFT
Radar Example
Radar example (Problem 2.65 in textbook)

- Radar transmission, $x_a(t)$
- Received signal, $y_a(t) = \alpha x_a(t-t_d) + v_a(t)$
 - t_d time delay
 - α attenuation
 - $v_a(t)$ noise

- Convert to discrete time (sampling)
 - $x(n) = x_a(nT)$
 - $Y(n) = \alpha x(n-D) + v(n)$

- Matlab script available on course webpage
Radar example – Part 2

a) How to estimate delay D with cross-correlation $r_{xy}(l)$?

b) Simulate input $x(n) = \{1,1,1,1,-1,-1,1,1,-1,1,-1,1\}$
 - Gaussian noise $v(n)$ with variance=0.01
 - **Matlab**: $v(n) = \sqrt{\text{variance}} \times \text{randn}(N,1)$;
 - Generate $y(n)$, $0 \leq n \leq 199$, $\alpha=0.9$, $D=20$

c) Compute and plot cross-correlation; estimate delay D
Radar example – Part 3

d) Repeat with variance 0.1 and 1

e) Repeat with modified sequence
 \[X=\{-1,-1,-1,1,1,1,1,-1,1,-1,1,1,-1,-1,1\} \]