This module:
will acquaint you with some basic linear algebra used later.

Suggested reading:
Part of this relates to Section 5.5 (5.4 in 3rd edition).
But this material is mostly covered in texts on linear algebra.

Chapter 5: Random Vectors

Motivation
In this chapter we go beyond 1 or 2 random variables to n.
The key issue is that n is large enough to make it difficult to model the pdf. But more on that later...

Why do we even need to consider $n > 2$ random variables over the same probability space?
Example application

Seismic discrimination — Given samples of a waveform over time \(X(t), \) \(t \in \{t_1, t_2, \ldots, t_n\} \), we want to determine whether the waveform was generated by an earthquake or an underground explosion.

We will compare the vector \(X \) to stored data and decide which type of event generated it.

Example application

Disease detection — We take multiple measurements of a patient (in the book they mention looking for black-lung disease), and want to decide whether the patient has the disease.

Challenge (p302 in 4th edition)

If there were \(n = 2 \) or \(3 \) random variables, we could understand the distribution and process data manually.

But when \(n \) is large, the different elements \(X_i \) are dependent, and we have no convenient features (such as Gaussianity), even estimating the distribution is tough.
To approach these types of problems, a convenient engineering design methodology considers the two main moments of the data: the expected value and the covariances. To work with these, we will begin with a review of linear algebra.

Linear algebra review

Matrix notation

\[
A = \begin{bmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{bmatrix}
= [a_{11}, a_{12}, \\
a_{21}, a_{22}, \\
a_{31}, a_{32}]
\]

A is of size 3×2.
The first subscript is for the row, the second for the column.

Transpose

\[
A^T = \begin{bmatrix}
1 & 3 & 5 \\
2 & 4 & 6
\end{bmatrix}
= [a_{11}, a_{21}, a_{31}, \\
a_{12}, a_{22}, a_{32}]
\]

Symmetric matrix

\[A = A^T\]

Matrix addition/subtraction

\[A_{mxn} + B_{mxn} = C_{mxn}\]
\[a_{ij} + b_{ij} = c_{ij}\]
Matrix product
\[A^{m \times k} \times B^{k \times n} = C^{m \times n} \]
\[c_{ij} = \sum_{k=1}^{k} a_{ik}b_{kj} \]

Example
\[
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}
= \begin{bmatrix}
1\cdot1 + 2\cdot3 & 1\cdot2 + 2\cdot4 \\
3\cdot1 + 4\cdot3 & 3\cdot2 + 4\cdot4
\end{bmatrix}
= \begin{bmatrix}
7 & 10 \\
15 & 22
\end{bmatrix}
\]

Column vector \[m \times 1 \text{ matrix} \]
Row vector \[1 \times m \text{ matrix} \]

Euclidean length or **norm**
\[x = (x_1, \ldots, x_n) \]
\[\|x\|_2 = \left(\sum_{i=1}^{n} (x_i)^2\right)^{\frac{1}{2}} \]

p-norm
\[\|x\|_p = \left(\sum_{i=1}^{n} (x_i)^p\right)^{\frac{1}{p}} \]

Example
\[x = \begin{bmatrix}
1 \\
2
\end{bmatrix}\]

\[\|x\|_1 = \sqrt{1^2 + 2^2} = \sqrt{5} \]
\[\|x\|_3 = \sqrt[3]{1^3 + 2^3} = 3\sqrt[3]{9} \]
Applications

Where does this appear?

Suppose we measure temperature once an hour for a day.

\[X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{24} \end{pmatrix} \]

A digital camera captures 1,000 x 4,000 pixel images.

\[A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1,1000} \\ a_{21} & a_{22} & \cdots & a_{2,1000} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1000,1} & a_{1000,2} & \cdots & a_{1000,1000} \end{bmatrix} \]

Eigen-values

\[A \cdot v = \lambda \cdot v \]

\[\uparrow \quad \uparrow \]

eigen-vector **scalar** **e-value**

Example

\[A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \]

\[\det \begin{bmatrix} 2-\lambda & 1 \\ 1 & 2-\lambda \end{bmatrix} = (2-\lambda)^2 - 1 = 0 \]

\[(3-\lambda)(1-\lambda) = 0 \]

\[\Rightarrow \lambda_1 = 3, \quad \lambda_2 = 1 \]
\((A-\lambda I) V = (0) \)

\(\lambda_1 = 3 \quad A-\lambda I = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \)

\[\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \]

\[\Rightarrow \quad v_1 = v_2 \]

In the book, they require unit norm, \(v_1^2 + v_2^2 = 1 \)

\[\Rightarrow \quad v_1 = v_2 = \frac{1}{\sqrt{2}}, \quad v = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \]

\(\lambda_2 = 1 \quad A-\lambda I = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \)

\[\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \]

\[v_1^2 + v_2^2 = 1 \]

\[\Rightarrow \quad v_1 = \frac{1}{\sqrt{2}}, \quad v_2 = -\frac{1}{\sqrt{2}}, \quad v = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} \]
Determinant analogous to amplification of volume.

\[\text{Vol}(A_s) = |\det(A)| \cdot \text{Vol}(S) \]

In the 2x2 case,

\[
\det(A) = \det \begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{pmatrix} = a_{11}a_{22} - a_{12}a_{21}
\]

In the general case, we have for diagonal matrices

\[
\det \begin{pmatrix}
 a_1 & 0 & \cdots & 0 \\
 0 & a_2 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & a_n
\end{pmatrix} = a_1a_2\cdots a_n
\]