Computational Complexity

[Cormen et al., Chapter 1, 2.1]

Keywords: algorithms, complexity, growth of functions
Algorithms and Running Time

[Cormen et al., Chapter 1]

Keywords: algorithms, running time
A weird example

- Let’s fill an array with values [1 2 ... 9999]

```matlab
x=[];
for n=1:9999;
    x=[x n];
end
```

- This code is slow...
- Why?
Let’s back up a bit...

- Wikipedia:

In mathematics and computer science, an algorithm is a self-contained step-by-step set of operations to be performed. Algorithms perform calculation, data processing, and/or automated reasoning tasks.
Algorithms

- Algorithms convert inputs into outputs

- Could have different algorithms for same conversion (e.g., discrete Fourier transform vs. fast Fourier)

- Could have different implementations of same algo
Analysis of algorithms

- Want to predict resources used by algorithm

- What resources?
 - Running time
 - Memory consumption
 - Communication requirements
 - Number of logic gates
 - Power consumption
What sort of analysis?

- What sort of computer?
 - Different machines vary drastically, right?
 - *Random access machine model* – instructions executed sequentially

- Want our analysis to express main characteristics of resource consumption
 - And ignore minor stuff

- Primary focus on running time
Q: How to analyze algorithms whose running time depends on input?
A: worst case, average case, & best case

Worst case often of greatest interest
 - Guarantee on runtime
 - Worst case might happen often
 - Worst case and average case might be similar
How to measure runtime?

- Want running time as function of input size

- Input size
 - Could be # items in input
 - Could be # bits to represent input
 - Could be multiple parameters (matrix: #rows, #columns)

- Measuring running time
 - Number of steps executed
 - Random access machine \rightarrow const time per line
 - Calling a routine -- one line; running it could be more
Order of Growth

[Cormen et al., Chapter 1.2]

Keywords: growth of functions
Two sorting algorithms

- Insert sort
 - Maintain (sorted) list of numbers processed so far
 - Next item gets inserted into list

- Merge sort
 - Divide problem into two parts (roughly equal size)
 - Conquer each problem (run merge sort recursively)
 - Merge solutions
Example

- Let’s run insert sort and merge sort
- Input x=(1, 4, 2, −3, 7, 2, 10, 5)
Their running times

- Running time $T(n)$ when sorting n numbers
 - Insert sort: $T_i(n) = n^2$
 - Merge sort: $T_m(n) = n \times \log_2(n)$

- Let’s give insert sort an edge
 - Merge implemented by bad programmer $\rightarrow 100n \times \log_2(n)$
 - Insert runs on cluster (10^{12} floating point operations/sec [flops])
 - Merge runs on regular machine (10^9)
Running times continued

- \(n=10^3 \)
 - Merge sort: \(100n \times \log_2(n) / 10^9 \) flops = 1 ms
 - Insert sort: \(n^2 / 10^{12} = 1 \) us

- \(n=10^6 \)
 - Merge sort: \(100n \times \log_2(n) / 10^9 \) flops = 2 s
 - Insert sort: \(n^2 / 10^{12} = 1 \) s

- \(n=10^9 \)
 - Merge sort: \(100n \times \log_2(n) / 10^9 \) flops = 3000 s (50 minutes)
 - Insert sort: \(n^2 / 10^{12} = 11 \) days

- *Asymptotic growth matters*
Order of growth

- Consider $T(n)=an^2+bn+c$
 - a, b, c positive constants

- Asymptotically, an^2 matters
 - $bn+c$ doesn’t

- Need to characterize asymptotic growth \rightarrow complexity
Formal Notions of Complexity

[Cormen et al., Chapter 2.1]

Keywords: computational complexity
Different types of computational complexity

- Computational complexity = formal classification of functions based on rate of asymptotic growth

- Different types of growth (details coming up)
 - $f(n)=\Theta(g(n))$ tight asymptotic bound
 - $f(n)=O(g(n))$ upper bound for $f(n)$
 - $f(n)=\Omega(g(n))$ lower bound for $f(n)$
 - $f(n)=o(g(n))$ ratio $f(n)/g(n)$ vanishes
Asymptotically tight growth

- Size of input n (natural number)
- \(f(n), g(n) \) positive

\[\Theta(g(n)) = \{ f(n): \exists c_1, c_2, N_0 > 0 \text{ s.t. } 0 < c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n > N_0 \} \]

- \(f(n) = \Theta(g(n)) \) means \(f(n) \) in class of functions that grow as fast as \(g(n) \)

- Main idea – can ignore lower order terms
Example

- Let’s show formally that $n^2 - 3n = \Theta(n^2)$
- Need to find c_1, c_2, N_0
More definitions

- $\Theta(g(n)) = \{f(n): \exists c_1, c_2, N_0 > 0 \text{ s.t. } 0 < c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n > N_0\}$

- $O(g(n)) = \{f(n): \exists c, N_0 > 0 \text{ s.t. } 0 < f(n) \leq cg(n), \forall n > N_0\}$
 - Pronounced “Big O”
 - Asymptotic upper bound

- $\Omega(g(n)) = \{f(n): \exists c, N_0 > 0 \text{ s.t. } 0 < cg(n) \leq f(n), \forall n > N_0\}$
 - Asymptotic lower bound

- $f(n)=o(g(n))$ means $\lim_{n \to \infty} f(n)/g(n)=0$
 - Pronounced “little o”
Intuition

- $f(n) = \Theta(g(n))$ if and only if $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$
Selecting Algorithms via Complexity

[Cormen et al., Chapter 2.1]

Keywords: computational complexity
Some low-complexity examples

- $\Theta(1)$ – run few simple lines of code
- $\Theta(\log(n))$ – searching for element in balanced tree data structure (will learn)
- $\Theta(n^{0.5})$ – determine whether a number is prime
Medium-complexity examples

- $\Theta(n)$ – find min/max among n numbers

- $\Theta(n \times \log(n))$
 - Sort n numbers
 - Fast Fourier transform (FFT)

- $\Theta(n^2)$
 - Matrix vector product ($n \times n$ matrix)
 - Direct computation of discrete Fourier transform (DFT)

- $\Theta(n^3)$ – matrix inversion
High-complexity examples

- $\Theta(2^n f(n))$ – optimally decode n bits (communication)
 - $f(n)$ – running time to evaluate each n-tuple

- $\Theta(n! f(n))$ – process all permutations of n objects
 - $f(n)$ – evaluate each permutation
How to select between algorithms?

- If two algorithms have “quite different” complexities, choose lower

- Examples:
 - Use FFT to compute Fourier transform
 - Prefer merge sort over insertion sort

- What if complexities are similar?
Counter example [B & Bresler, 2005]

- Suffix sorting – used in some data compression algorithms
- Various implementations

- Previous approaches:
 - Suffix trees – linear worst case, \(\Theta(n) \)
 - Fastest methods in practice – linear average case, quadratic worst, \(O(n^2) \)
 - For one “bad” text file (< 1 MB), “fastest” method required almost an hour; suffix trees ran in 4-5 seconds
Counter example [B & Bresler, 2005]

- New algorithm proposed

- Computational complexity $\Theta(n \times \log^{0.5}(n))$
 - Faster than suffix trees ($\sqrt{\log(n)}$ is small)
 - Reasonable worst case

- Constants matter unless computational complexity quite different
Algorithm Design

[Cormen et al., Chapter 1.3]

Keywords: divide and conquer, recursion
Divide and conquer approach

- Many computational problems can be approached as follows
 1. *Divide* problem into sub-problems
 2. *Conquer* each sub-problem recursively
 3. *Combine* solutions

- **Note:** if problem is small enough, solve directly; apply recursion to sub-problems only if big enough

- Examples: merge sort, FFT, ...
Running time of divide and conquer

- Direct solution of small problems is $\Theta(1)$
- Dividing size-n problem into a sub-problems of size n/b: $D(n)$
- Combining into size-n solution: $C(n)$

- Recursive formula:

$$T(n) = \begin{cases}
 D(n) + aT\left(\frac{n}{b}\right) + C(n), & n \geq N_0 \\
 \Theta(1), & n < N_0
\end{cases}$$
Example (Question 4, practice midterm 2016)

- Suppose that merge sort runs in $64n \times \log_2(n)$ steps while insertion sort takes $8n^2$
 - For which value of n does merge sort start beating insertion sort?
 - How to modify merge sort to obtain faster performance on small inputs? Discuss the modification and new runtime.
Typical Computational Architectures

Keywords: cache, GPU, memory hierarchy, multi processor
Why consider computational architecture?

- Random access machine model somewhat simple

- Some modern architectures offer significant speedups (2+ orders of magnitude) via parallelization

- Advantageous to be aware of opportunities
Types of processors

- **Low-end embedded processor**
 - Clockspeed several MHz
 - Memory < 1 MB
 - Limited instruction set → math operators require many clock cycles

- **Typical central processing unit**
 - Examples: Intel/AMD laptop/desktop, Intel Xeon server, smartphone
 - Clockspeed 2-5 GHz
 - Memory in GB (could be hundreds)
 - Fast math operations
 - Many billions of transistors

Intel Xeon
Multi-processors

- Some systems/chips support multiple processors

- Widespread – Intel/AMD chips with multiple cores

- General purpose graphics processing unit (GP GPU)
 - Initially designed for graphics processing
 - Highly parallelizable
 - Currently support up to *thousands* of cores
 - Much faster but constrained (not fully parallel)

- Clusters (cloud computing)
Memory hierarchy

- Main idea – fast memory is expensive
 - Partition memory into several hierarchies
 - Top of pyramid – small amount of fast memory
 - Bottom – large amount of cheap slow memory
 - Search for data in top of pyramid, else spill into lower levels
Types of memory in hierarchy

- Registers – several dozen; on CPU; same-clock access
- Cache – several MB; 1-dozens clocks
- Main memory (RAM) – several GB; ~100 clocks
- Permanent memory (disk, cloud?) – TB; slow
Memory in GPUs

- GPU have significant (GBs) on-chip memory
- Each core has small fast local memory
- GPU chip has significant slower memory
 - Challenge: Could be very slow for each core to access memory
 - Solution: hardware support for adjacent memory access with high bandwidth (hundreds of GB/second) interconnect

- Bottom line – solid GPU programming is tough
Parallel Processing

[Cormen et al., Chapter 30]

Keywords: parallel computers, parallel random access machine (PRAM)
Parallel random access machines (PRAM)

- Recall random access machine (RAM) model
 - Serial (not parallel)

- Want model for parallel RAM (PRAM) machine
 - Parallel architectures are quite intricate → want to capture main stuff
 - Assume that time equates to # parallel memory accesses
 - *Imprecise assumption* – *access time grows with # processors p*
Types of PRAM memory access

- Concurrent read – PRAM algo reads concurrently (simultaneously) from same location
- Exclusive read – never read same memory location concurrently

- Same for concurrent/exclusive write

- Types of PRAM machines:
 - EREW – exclusive read exclusive write
 - CREW – concurrent read exclusive write
 - ERCW – exclusive read concurrent write
 - CRCW – concurrent read concurrent write
Discussion

- CRCW PRAM supports EREW algos
 - Not vice versa

- EREW – simple hardware \rightarrow fast
- CRCW – complicated hardware \rightarrow slow

- Synchronization between cores can be messy

- CRCW algos sometimes have lower computational complexity than EREW (but worse constants)
Keywords: arrays, data structures, linked lists, queues, sets, stacks
Why do we need data structures?

- Want to organize data efficiently
 - Data is set of objects/elements
 - Low memory footprint
 - Want fast access/searches
 - Want fast updates

- Want to support dynamic sets
 - Changes over time
 - Key operations: insert, delete, check membership
 - If we want more operators, need more refined data structure
What does data structure need to support?

- **Data arranged in objects that contain fields**
 - Key – field that identifies objects
 - Other fields contain attributes about object

- **Common operators**
 - Search(S,k) – searches for object with key k in set S
 - Insert(S,x) – x is object
 - Delete(S,x) – needs pointer to x (not its key)
 - Minimum(S) – returns smallest key
 - Maximum(S) – largest key

- **For ordered sets:**
 - Successor(S,x) – next object in structure; NIL if already last/largest
 - Predecessor(S,x) – previous object; NIL if first/smallest
Stacks and Queues

[Cormen et al., Chapter 11.1]

Keywords: queues, stacks
Stacks vs. queues

- **Stack**
 - Always remove last element that was inserted
 - Last in first out (LIFO)
 - Push (insert) new object onto stack
 - Pop (delete) old one
 - Application – operating system stores list of routines we call in stack; when exiting routine, remove info about last one (current routine)

- **Queues**
 - Always remove first element that was inserted
 - First in first out (FIFO)
 - Enqueue (insert) and dequeue (delete)
 - Application – customers waiting for their requests to be processed
Implementing stacks

- Implement as array \(S[1,\ldots,n] \)
 - Advantage: simple
 - Disadvantage: could have overflow
 - Must store \(\text{Top}(S) \)

- Operators
 - \(\text{Stack_empty}(S) \)
 - \(\text{Stack_full}(S) \)
 - \(\text{Push}(S,x) \)
 - \(\text{Pop}(S) \)
Implementing queues

- Implement as array Q[1,...,n]
 - Store Head(Q) and Tail(Q) (back/front of queue)
 - Elements in queue: Head(Q), Head(Q)+1, ..., Tail(Q)-1
 - Indexing is modulo-n
 - Head(Q)=Tail(Q) → queue empty
 - Head(Q)=Tail(Q)+1 → queue full

- Operators
 - Enqueue – store data, increment Tail(Q)
 - Dequeue – retrieve data, increment Head(Q)
Keywords: linked lists
What does list do?

- Main objective – arrange objects in linear order

- Arrays
 - Objects ordered using index (integer)
 - Difficult to add object “in the middle” (what does index 3.6 mean?)

- Lists
 - Objects arranged with pointers
 - Easy to insert/delete objects by updating pointers
Types of lists

- Doubly linked list
 - Each object contains key, pointers to next/prev

- Single linked – only next pointer (no prev)

- Sorted vs. unsorted (easier to search through sorted)
Operators on linked lists

- **List_search(L,k)**
 - Search for key k in list
 - Complexity $O(n)$ not $\Theta(n)$

- **List_insert(L,x)**
 - Adds new object to head of list; $\Theta(1)$

- **List_delete(L,x)**
 - Must splice off data structure
Graphs and Trees

[Cormen et al., Chapter 5.4-5.5]

Keywords: graphs, trees
What’s a graph?

- Structure relating different objects

- G(V,E)
 - Graph G
 - Vertices V (also called nodes)
 - Edges E (between two vertices)

- Can be
 - Directed graph - edges are arrows
 - Undirected
Concepts

- Consider edge \((u,v) \in E\) where \(u,v \in V\)
 - We say \(v\) adjacent to \(u\)

- Degree\((v)\) = \# edges connecting to vertex \(v\)

- Length-\(k\) path \(p\) from \(u\) to \(u'\)
 - Edges \((v_0,v_1), (v_1,v_2), ..., (v_{k-1},v_k)\)
 - \(v_0=u, v_k=u', (v_{i-1},v_i) \in E, i \in \{1, ..., k\}\)
 - \(u'\) reachable from \(u\) using path \(p\)

- Example: length-2 path \(p=(D,E),(E,A)\)
More about paths

- **Simple path** – all vertices on path are distinct
 - Not distinct \Rightarrow can shorten path

- **Cycle** – path starts/ends same vertex
 - Examples: $p_1 = (a, b), (b, c), (c, a)$, $p_2 = (a, c), (c, a)$

- **Acyclic graph** – graph without cycles
Connectivity in graphs

- Undirected graph
 - Connected component – all nodes reachable from one another
 - Connected components partition V into equivalent classes
 - Connected graph – has one (large) connected component

- Directed graph
 - Strongly connected – all nodes reachable (via directed paths) from one another

- Complete graph – all vertex pairs are adjacent
Bipartite graph

- V can be partitioned into V_1, V_2
- $(u,v) \in E$ implies
 - Either $u \in V_1$ & $v \in V_2$
 - Or $v \in V_1$ & $u \in V_2$

- Application: linear regression $Y = X\beta + \varepsilon$
 - V_1 corresponds to Y
 - V_2 corresponds to β
 - Matrix X corresponds to edges E
 - Estimate β by passing messages between V_1 and V_2
Trees

[Cormen et al., Chapter 5.5]

Keywords: acyclic graphs, forests, free trees, rooted trees
Forests and trees in undirected graphs

- Forest = acyclic *undirected* graph
- Different components connected without cycles

- Tree = connected forest
 - Or forest = union of trees

- Are acyclic graphs good?
 - Redundant edges could be costly \rightarrow good
 - No connectivity if edge “breaks” \rightarrow not robust \rightarrow bad
Properties of trees

- **Theorem**: undirected $G(V,E)$, following are equivalent
 - G is tree
 - Any $v_1, v_2 \in V$ connected by unique simple (no cycles) path
 - G connected & removing any edge makes it disconnected
 - G connected & $|E| = |V| - 1$
 - G acyclic & $|E| = |V| - 1$
 - G acyclic & adding any edge creates cycle
Free trees vs. rooted trees

- Directed graph
 - Rooted tree - one of nodes is root
 - Paths lead *from* root *to* other nodes
 - Example: node 2 is root

- Earlier we considered undirected graph
 - Free trees
 - No concept of from/to
More about rooted trees

- **Path from root** \(r \) **to node** \(x \) **is unique**
 - Node \(y \) on path is ancestor of \(x \)
 - \(x \) descendant of \(y \)
 - Example: node 11 is descendant of node 7

- **Subtree at** \(x \) = **tree induced by descendants of** \(x \)
 - Example: subtree of 7 = \{7,2,6,5,11\}

- Depth(\(x \)) = **length of path from** \(r \) **to** \(x \)
- Height(\(T \)) = maximal depth among all nodes
Children and parents

- Consider x descendant of y & connected by edge
 - x child of y
 - y parent of x

- Properties
 - All nodes except r have single parent
 - Leaf = node without children
 - Internal node = not leaf
Implementing trees

- Details vary based on type of tree
 - Fixed # children per node?
 - Ordered or not?

- Typical approach
 - Each node contains pointers to child/children, parent, sibling node(s), parent node, various fields
 - Pointer to root
New Example

- Consider an undirected acyclic graph $G(V,E)$ with $|V| = 6$ vertices and $|E| = 4$ edges
- Sketch a possible such graph; is it a tree?
Putting it Together

Keywords: coding, profiling
Our assignment

- Will develop a merge sort routine

- Main structure:

 mergesort(input x, output y)

 if x is short

 y=x

 else

 y1=mergesort(first half) % recursive call
 y2=mergesort(second half)

 y=merge(y1,y2) % merge both halves

 end
How to implement merge?

- Input vectors x_1, x_2

- Loop over:
 - Compare first numbers in both vectors
 - Move smaller one into output array; increment pointer(s) accordingly

- Are $\text{length}(x_1)$ and $\text{length}(x_2)$ same?
Profiling

- Wikipedia:

In software engineering, profiling ("program profiling", "software profiling") is a form of dynamic program analysis that measures, for example, the space (memory) or time complexity of a program, the usage of particular instructions, or the frequency and duration of function calls. Most commonly, profiling information serves to aid program optimization.
Profiling continued

- Profiling measures running time consumed on each line/function
- Number of times each line/function ran

- Matlab mini-example:

```matlab
  x=randn(23,1);
  profile on
  y=mergesort(x);
  profreport % generates detailed report
```
<table>
<thead>
<tr>
<th>running time</th>
<th>line number</th>
<th>code</th>
<th>commented out line</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.01 59048</td>
<td>2</td>
<td>N1=\text{length}(x1);</td>
<td></td>
</tr>
<tr>
<td>< 0.01 59048</td>
<td>3</td>
<td>N2=\text{length}(x2);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>%\text{y} = \text{zeros}(\text{N1+N2},1); % \text{initialize}</td>
<td></td>
</tr>
<tr>
<td>< 0.01 59048</td>
<td>5</td>
<td>index1=1; index2=1; % \text{where we're pointing into}</td>
<td></td>
</tr>
<tr>
<td>< 0.01 59048</td>
<td>6</td>
<td>for n=1:N1+N2</td>
<td></td>
</tr>
<tr>
<td>0.05 862117</td>
<td>7</td>
<td>if x1(index1)<x2(index2) % \text{first element is}</td>
<td></td>
</tr>
<tr>
<td>0.18 425863</td>
<td>8</td>
<td>y(n)=x1(index1);</td>
<td></td>
</tr>
<tr>
<td>0.01 425863</td>
<td>9</td>
<td>index1=index1+1;</td>
<td></td>
</tr>
<tr>
<td>0.02 425863</td>
<td>10</td>
<td>if index1>N1 % \text{ended processing x1}</td>
<td></td>
</tr>
</tbody>
</table>
Profiling methodology

- Look through all lines with substantial running time
- Make sure you know why it took plenty of time
- Re-design as needed