ECE 592
Topics in Data Science

Dror Baron
Associate Professor
Dept. of Electrical and Computer Engr.
North Carolina State University, NC, USA
Clustering and Project 1

[Hastie et al., Section 14.3]

Keywords: clustering, unsupervised learning
Goals

- Want to group data into “clusters” that seem related
- Central notion – degree of similarity between different clusters
- Typical algorithmic approach is iterative; move points between clusters, recalculate cluster centers
Main steps

- **Part 1**: Upload image
 - Will compress image as we proceed

- **Part 2**: initial compression approach
 - Partition image into blocks/patches
 - Arrange all patches into list
 - Run clustering on list of patches
 - For each cluster, *representation patch* will be average of patches in that cluster
Part 3: Rate-distortion (RD) trade-off

- Compression vs. image quality
 - Each patch in image belongs to some cluster in dictionary
 - Encoder (compressor) will output index of cluster
 - Requires $\log_2(\#\text{clusters})$ bits per patch
 - Decoder (decompressor) maps index to patch in dictionary

- More clusters \rightarrow less *distortion* (between image & compressed version) but larger coding *rate*
- Trade-off between rate and distortion
- Fundamental information theoretic limits studied in rate distortion theory
Part 4: Patch size and RD performance

- Use bigger patches → captures more dependencies between pixels → better RD performance

- **Problem1**: bigger patches may increase computation

- **Problem2**: if patches are too big, might not be enough → clustering process won’t work as well
Clustering via K-means algorithm

Keywords: K-means, clustering
K means algorithm

- Initialize K cluster centers
 - Select K points among training data

- Iterate until convergence:
 - Associate each training datum with nearest cluster center
 - Recompute cluster centers as average of training data in cluster

- Sensitive to initialization (can get stuck in local optimum)
- Other clustering algos use model for cluster
More about K means

- Map datum x_n to cluster $C(n)=k$ to representation level r_k, $k=k(n)=C(n)$
- Squared error between x_n and r_k
 $$d(x_n, r_k) = \sum_{p=1}^{P} (x_{np} - rkp)^2 = \|x_n - r_k\|^2$$
- Want $r_k = \min_{x \in \mathbb{R}^P} \sum\{n:C(n)=k\} \|x_n - r_k\|^2$
- Select cluster center, $r_k = \frac{1}{|\{n:C(n)=k\}|} \sum\{n:C(n)=k\} x_n$
- Summed square errors for mapping C
 $$\text{Error}(C) = \sum_{n=1}^{N} \|x_n - r_{k(n)}\|^2 \quad \text{sum over N data}$$
 $$= \sum_{k=1}^{K} \sum\{n:C(n)=k\} \|x_n - r_k\|^2 \quad \text{sum over K clusters}$$
Project 2

Keywords: Dijkstra’s algorithm
Main idea - “GPS algorithm”

- Will download map of North Carolina (NC) with distances between several hundred locations

- Remove long distances (e.g. >20 miles) to go between nearby locations directly
 - Reduces number of edges

- Select two locations; run Dijkstra’s algorithm to find shortest path
Dijkstra’s algorithm

- Finds shortest paths from target t node to others
- Maintain set of un/visited nodes; initialize all as unvisited
- Maintain set of distances
 - Initialize as zero for node t, infinity for others
 - While node is unvisited, distance is tentative

- While set of unvisited nodes is non-empty:
 - Select unvisited node n with shortest distance
 - For v neighbors of n, dis_v=min(dis_v, d_n+edge(n,v))
 - Mark n as visited
Project 3

Keywords: merge sort
Improving merge sort

- Will consider different ways to improve our merge sort implementation

- **Approach 1**: moving sequences back and forth between routines is costly
 - Can be shown to require $O(n)$ per function call → aggregating over various function calls $O(n\log(n))$
 - This extra cost increases constant in complexity term
 - Can reduce to $O(1)$ per function call by passing indices into array
More improvements

- **Approach 2: functions in same file**
 - Routines in different files require the software system to spend resources opening and reading files
 - May accelerate runtime to put everything in same file
 - May further accelerate runtime to inline merge function within merge sort routine

- **Approach 3: larger basis case**
 - Current implementation considers basis case for n=1 (already sorted)
 - Performing n=2 (i.e., output=(\(\min(\text{input}),\max(\text{input})\))) will halve number of function calls, likely accelerating runtime
 - Can consider larger basis cases too, possibly with insert sort