1) Solution of practice midterm.

Here are some errors:

a) The "basis case" should be for length \(\ell \leq 2 \), not 3.

b) The "basis case" should assign \(y = x \), and not \(x = y \).

c) \(N' \) should be the ceiling or floor (all integers) of \(N/2 \).

d) The merge should be of \(y_1 \) and \(y_2 \), and not \(x_1 \) and \(x_2 \).

2) To keep things simple, first consider \(X \subseteq \{0, 1\}^n \) with \(N_0 \) and \(N_1 \) being the number of times 0 and 1 appear in \(X \), respectively. Define the empirical parameter as

\[\hat{\Theta} = \frac{N_1}{N_0 + N_1} \]

where we note that \(N = N_0 + N_1 \).

Our model class is a set or collection of possible representation levels for \(\hat{\Theta} \). We've discussed that a good model class obeys

\[|class| = O(\sqrt{N}) \]

in which case roughly \(\log_{2}(N) \) bits are needed to encode the appropriate representation level.

But here \(x_{mk} \) depends on the previous \(k \) symbols, and there are \(C_k \) combinations of these \(k \) symbols.
moreover, each conditional distribution provides
probabilities for k possible characters. With
a binary alphabet, i.e., fully, one parameter
captures n_1 and n_2. With k characters
there are $k!$ parameters.

In total, there are $k!$ parameters for
each of the C_k possible symbols (preceding
k symbols), and the model complexity is
"something like" $\frac{1}{2} C_k \cdot (k-1) \log_2(n)$ bits.

My "something like" alludes to some potential
for reducing the model class. For example,
the set of $k!$ parameters sits on a simplex
because their sum is no more than 1. Therefore,
$\frac{k-1}{2} \log_2(n)$ could probably be reduced to
something like $\frac{k-1}{2} \log_2 (n^k)$. In any case,
such refinements are not covered in our course.

Recall that $N(\mu, \sigma^2)$ can be expressed as
a probability density function (pdf),
$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$
Therefore,
$$f_{true}(x) = \frac{1}{\sqrt{\pi} \mu^2} e^{-\frac{x^2}{\mu^2}} + \frac{1}{\sqrt{\pi} \sigma^2} e^{-\frac{(x-\mu)^2}{\sigma^2}}.$$
$$f_{red}(x) = \frac{1}{\sqrt{\pi} \sigma^2} e^{-\frac{x^2}{\sigma^2}}.$$
The probability of red conditioned on observing
X can be computed with Bayes' rule:

\[
\Pr(\text{red} \mid X) = \frac{\Pr(\text{red}, X)}{\Pr(X)}
\]

\[
= \frac{\Pr(\text{red}, X)}{\Pr(\text{red}, X) + \Pr(\text{blue}, X)}
\]

\[
= \frac{\Pr(\text{red}) \cdot \Pr(X \mid \text{red})}{\Pr(\text{red}) \Pr(X \mid \text{red}) + \Pr(\text{blue}) \Pr(X \mid \text{blue})}
\]

we were told that \(\Pr(\text{blue}) = \Pr(\text{red}) = 0.5\)

and so we have

\[
\Pr(\text{red} \mid X) = 0.5 \cdot \frac{\Pr(\text{red}, X)}{0.5 \cdot \Pr(\text{red}, X) + 0.5 \cdot \Pr(\text{blue}, X)}
\]

\[
= 0.5 \left[\frac{e^{-\alpha x} + e^{-\beta x}}{0.5[e^{-\alpha x} + e^{-\beta x}] + [e^{-\alpha x}]} \right]
\]

we can implement this calculation in MATLAB and see numerically where \(\Pr(\text{red} \mid X)\) is less than or greater than 0.5. When it exceeds 0.5, a "red" guess is reasonable, else blue is the more likely posterior.

The algorithm has two steps:
step 1: run merge sort in \(\Theta(\log n)\) time.
step 2: we have a list of \(N\) sorted numbers, and the numbers being distinct or not can be decided by scanning through the \(n-1\) adjacent pairs and checking whether their values are identical.
Here is possible pseudo-code:

```plaintext
for index = 1 to n-1
    if X(index) = X(index+1)
        then there is a repeat occurrence
            break / return
    else continue looping
```

It can be shown that \(T(n + n \log(n)) = \Theta(n \log(n)) \)

To see why, note that

\[
 n \log_2(n) \leq n \log_2(e) \leq 2n \log_2(n)
\]

\[
\uparrow \quad \uparrow
\]

for \(n \geq 2 \quad \text{for} \quad n \\leq 2
\]

Finally, let's show why we write \(\Theta(n \log(n)) \)
without specifying the base of the logarithm.

To see why, we will prove that \(\log_4(n) = \Theta(\log_2(n)) \).

Recall that \(\log_4(n) = \frac{\log_2(n)}{\log_2(4)} = \frac{\log_2(n)}{2} \).

Therefore, we can take \(N_0 = 1 \) and \(c_1 = \frac{1}{2} \),
we have that
\[
\frac{1}{2} \log_2(n) \leq \log_4(n) = \frac{1}{2} \log_2(n) \leq \frac{1}{2} \log_2(n)
\]

for all \(n \geq N_0 \). This proves formally that
\(\log_4(n) = \Theta(\log_2(n)) \), and the result can be expanded to any logarithmic base.
we will show formally that
\[0.001 n^3 + 100 n^2 = \Theta(n^3). \]
we want to identify some \(N_0 \geq 0, c_1 \geq 0, \) and \(c_2 \geq 0 \) such that
\[c_1 n^3 \leq 0.001 n^3 + 100 n^2 \leq c_2 n^3 \]
for all \(n \geq N_0. \) Let's take \(c_1 = 0.001, \) and we can see that
\[c_1 n^3 = 0.001 n^3 \leq 100 n^2 + 0.001 n^3 \]
for all \(n > 0. \)

What about \(c_2? \) How about \(c_2 = 0.000 \) which is the sum of the two coefficients in the polynomial?
\[0.001 n^3 + 100 n^2 = 0.001 n^3 + 100 n^2 \]
\[n=1 \] note \(n^3 \) instead of \(n^2 \)
\[= 100.001 n^3 \]
\[= c_2 n^3. \]
Therefore, in summary, we have shown for \(N_0 = \max(0,1) = 1, c_1 = 0.001, \) and \(c_2 = 100.001 \)
that
\[c_1 n^3 = 0.001 n^3 \leq 100 n^2 + 0.001 n^3 \leq 100.001 n^3 \]
\[= c_2 n^3 \]
for all \(n \geq N_0. \) This completes the formal demonstration that \(0.001 n^3 + 100 n^2 = \Theta(n^3). \)