Please remember to justify your answers carefully.

Last name: ___________________ First name: ___________________
Question 1 (Linear regression.)
Consider the following data with one input and one output.

<table>
<thead>
<tr>
<th>x (input)</th>
<th>y (output)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

(a) Consider modeling the dependence between the input, x, and output, y, using a linear model, $y = ax + c$. What is the squared error, $\sum_i (y_i - (ax_i + c))^2$, obtained by running linear regression on the entire data?

(b) Assume that the 2 left most points in the plot above are used for training, and the 2 right most are the test set. What is the squared error on the test set after running linear regression on the training data?
(c) We now consider a new set of data below. What is the squared error using linear regression on this data? (You may assume that the best fit is a horizontal line, i.e., $a = 0$ in our linear model, meaning that $y = c$.)

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
Question 2 (Bayesian classification.)
Consider the following classification problem. First, we generate $X \sim \text{Bernoulli}(\frac{1}{2})$, where Bernoulli random variables take the values 0 or 1. Next, we generate Y that depends on the value of X; if $X = 1$, then $Y \sim \text{Bernoulli}(p)$, else $Y \sim \text{Bernoulli}(q)$, where you can assume that $p > q$. (Following Homework 5, it may be easier for you to visualize that $Y = 1$ represents a red class, and $Y = 0$ represents a blue class.)

(a) Express $\Pr(X = 0)$, $\Pr(X = 1)$, $\Pr(Y = 0|X = 0)$, $\Pr(Y = 1|X = 0)$, $\Pr(Y = 0|X = 1)$, and $\Pr(Y = 1|X = 1)$ using p and q.

(b) Express the joint probabilities, $\Pr(X = 0, Y = 0)$, $\Pr(X = 0, Y = 1)$, $\Pr(X = 1, Y = 0)$, and $\Pr(X = 1, Y = 1)$.

(c) Compute $\Pr(Y = 0)$ and $\Pr(Y = 1)$.
(d) Express $\Pr(X = 0|Y = 0)$, $\Pr(X = 0|Y = 1)$, $\Pr(X = 1|Y = 0)$, and $\Pr(X = 1|Y = 1)$ using p and q.

(e) What is the Bayes optimal classifier? That is, given $Y = 0$ (or $Y = 1$), is $X = 0$ or $X = 1$ more likely? (Recall that $p > q$.)
Question 3 (Ridge regression.)
Consider a vector β observed through noisy measurements y,

$$y = X\beta + z.$$

Our goal is to recover or estimate $\beta \in \mathbb{R}^N$, given $X \in \mathbb{R}^{M \times N}$ and $y \in \mathbb{R}^M$. Below, you will show in several steps that when β and z are modeled as independent and identically distributed (i.i.d.) Gaussian, maximum a posteriori (MAP) estimation of β,

$$\beta_{MAP} = \arg \max_{\beta} f(\beta | X, y),$$

is a special case of ridge regression.

(a) We begin deriving the solution β_{MAP} that maximizes $f(\beta | X, y)$,

$$\beta_{MAP} = \arg \max_{\beta} f(\beta | X, y)$$

$$= \arg \max_{\beta} \frac{f(\beta, X, y)}{f(X, y)}$$

$$= \arg \max_{\beta} f(\beta, X, y).$$ \hspace{1cm} (1)

Why does the last step, (1), hold?

(b) Focusing on the last term, $f(\beta, X, y) = f(X)f(\beta|X)f(y|\beta, X)$, but β is independent of X, i.e., $f(\beta|X) = f(\beta)$, and so

$$\beta_{MAP} = \arg \max_{\beta} f(\beta, X, y)$$

$$= \arg \max_{\beta} f(X)f(\beta)f(y|\beta, X)$$

$$= \arg \max_{\beta} f(\beta)f(y|\beta, X).$$ \hspace{1cm} (2)

Why does the last step, (2), hold?
(c) To compute $f(\beta)$ and $f(y|\beta, X)$ in (2), we model each of the M scalar entries in $z \in \mathbb{R}^M$, which can be interpreted as a noise or error vector, as i.i.d. zero-mean Gaussian with variance σ_z^2. That is, $Z_m \sim \mathcal{N}(0, \sigma_z^2)$, where Z_m is the random variable corresponding to entry m of the noise vector, and $m \in \{1, \ldots, M\}$. The probability density function (pdf) for Z_m can be expressed,

$$f(Z_m = z) = \frac{1}{\sqrt{2\pi\sigma_z^2}} e^{-\frac{z^2}{2\sigma_z^2}}.$$

You are also given that the N entries of β are i.i.d. with pdf $f(\beta_n) \sim \mathcal{N}(0, \sigma^2)$, and $n \in \{1, \ldots, N\}$. Derive expressions for $f(\beta)$ and $f(y|\beta, X)$ in terms of X, y, σ_z, σ.

(d) Because the logarithm is a monotone function, it suffices to maximize log ($f(\beta|y, X)$),

$$\beta_{MAP} = \arg \max_{\beta} f(\beta)f(y|\beta, X)$$

$$= \arg \max_{\beta} \text{log}(f(\beta)f(y|\beta, X))$$

$$= \arg \max_{\beta} \text{Polynomial}(\beta, y, X, \sigma_Z, \sigma).$$

Express Polynomial($\beta, y, X, \sigma_Z, \sigma$).
(e) Recall that ridge regression has the form

\[\beta_{\text{ridge}} = \arg \min_\beta \| y - X \beta \|^2 + \lambda \| \beta \|^2, \]

where \(\| \cdot \|^2 \) is the squared \(\ell_2 \) norm. (Note that the arg max of previous parts becomes an arg min by adding a minus sign.) The ridge regression form should correspond to your expression above; what is \(\lambda \)? What intuition can you draw from the expression for \(\lambda \)? If you could not derive the expression for \(\beta_{\text{MAP}} \), please explain in general how \(\lambda \) impacts the ridge regression solution.

(f) For a ridge regression problem, the following three figures illustrate the solutions for \(\lambda = 1, 10, 100 \), but in the wrong order. Match each of the three figures with its corresponding \(\lambda \) value. Make sure to justify your answer.

![Figure 1](image)

(a) \(\lambda = \)
(b) \(\lambda = \)
(c) \(\lambda = \)

Figure 1: Suggest the corresponding \(\lambda \) values from 1, 10, 100.
Question 4 (Image deblurring.)
Imagine a person taking a picture while their hand is shaking. Instead of the camera’s focal plane y measuring the image, x, there will be a 2D convolution between x and some convolution kernel h, which can be denoted by $h \ast x$ and defined as

$$\{ h \ast x \}_{n_1,n_2} = \sum_{k_1,k_2} h_{k_1,k_2} x_{n_1-k_1,n_2-k_2}.$$

Note that n_1 and n_2 are horizontal and vertical indices in an image, and k_1 and k_2 are horizontal and vertical indices used to compute 2D convolution. The measurements are further contaminated by noise,

$$y_{n_1,n_2} = \{ h \ast x \}_{n_1,n_2} + z_{n_1,n_2},$$

which is more conveniently denoted in 2D form, $y = h \ast x + z$.

Imagine that several years from now you work in digital camera design. The camera array gives you the noisy blurry measurements, y, an accelerometer provides an estimate of the convolution kernel, h, and suppose further that you know the distribution of noise, z. How would you estimate the unknown image, x?

In your answer, please consider the following aspects. First, how is the deblurring problem, $y = h \ast x + z$, related to other problems we discussed; is this a classification problem, clustering, linear regression, other? Second, how can sparsity information for images help in estimating x? Ideally, you should be able to propose a scheme that deblurs x using algorithms and concepts we learned in class.