Performance Regions in Compressed Sensing from Noisy Measurements

Junan Zhu and Dror Baron

North Carolina State University

20 March 2013

Thanks to NSF and ARO for generous support
Main Idea
Main Idea

Noiseless Compressed Sensing

Input x is sparse

- Measurements are taken by a matrix $\Phi \in \mathbb{R}^{M \times N}$, $M < N$
- Exploit the sparsity of the signal, resulting in fewer measurements
Application of Compressed Sensing

- Medical imaging
- CDMA
- Seismic imaging
- Financial prediction
Crucial Reality

- Noise Noise Noise!!!
- For CS, much less attention has been focused on noisy case
Additive Noise Channel

Input $x_i \sim f_X(x_i)$ i.i.d.
Measurement matrix $\Phi \in \mathbb{R}^{M \times N}$ has unit norm rows, $\Phi_{ij} \sim \mathcal{N}(0, 1/N)$
γ is inverse noise level, related to SNR
Measurement rate $R = \frac{M}{N}$
Conventional Signal Reconstruction

In vector channel $y = \sqrt{\gamma} \Phi x + z$, increased γ leads to reduction in error.

Not the case for CS!
Surprise [Krzakala et al. ’12] had similar results
Background and Problem Setting
Decoupling Theorem [Guo & Wang 08]

- Large system limit
 \[
 \lim_{N \to \infty} \frac{M}{N} = R > 0
 \]

- Decouple vector channel
 \[
 y = \sqrt{\gamma} \Phi x + z
 \]

 into scalar channel
 \[
 \tilde{y}_i = \sqrt{\gamma \eta} R x_i + \tilde{z}_i, \quad i \in \{1, 2, \ldots, N\}
 \]

- \(\tilde{y}_i, \tilde{z}_i\) sufficient statistics for \(y, z\)
- \(\eta\) degradation of the channel; the bigger the better
- Easier to analyze
- Want to compute minimum mean square error (MMSE)
Tanaka’s Fixed Point Equation [Tanaka 02]

- Fundamental information theoretical limit for scalar channel
 \[\frac{1}{\eta} = 1 + \gamma \cdot \text{MMSE}(\eta) \]

- Let
 \[F_1(\eta) = \eta; \quad F_2(\eta) = 1 - \eta \gamma \cdot \text{MMSE}(\eta) \]

- Solution for η is fixed point of equation
Decide Correct Fixed Point

- May have multiple fixed points (solutions for η)
- Correct one minimizes free energy (from statistical physics)

$$E(\eta) = I(x_i; \sqrt{\gamma \eta} R x_i + \tilde{z}_i) + \frac{R}{2} [(\eta - 1) \log_2(e) - \log_2(\eta)]$$
Sparse Gaussian distribution with sparsity p

$$f_{X_i}(x_i) = p \cdot \frac{1}{\sqrt{2\pi}} e^{-x_i^2/2} + (1 - p) \cdot \delta_0(x_i), \quad i \in \{1, 2, ..., N\}$$

Gaussian noise

$$f_{Z_i}(z_i) = \frac{1}{\sqrt{2\pi}} e^{-z_i^2/2}, \quad i \in \{1, 2, ..., N\}$$

Can obtain expression for MMSE, solve for η
Main Results
Main Results

Different Regions and Thresholds

[Image of graph showing different regions and thresholds]

[Wu & Verdú '11]

Junan Zhu and Dror Baron (NCSU)

Performance Regions in CS

20 March 2013
Main Results

Different Regions and Thresholds

\[\gamma \rightarrow \infty \]

\begin{align*}
\text{Region 1}_{\text{low}} & : \gamma_{\text{low}} \\
\text{Region 1}_{\text{high}} & : \gamma_{\text{high}} \\
\text{Region 3}_{\text{low}} & : \gamma_{\text{low}} \\
\text{Region 3}_{\text{high}} & : \gamma_{\text{high}} \\
\end{align*}
Main Results

Different Regions and Thresholds

\[\gamma (\text{dB}) \]

Region 4

Region 1\(_{\text{high}}\)

Region 1\(_{\text{low}}\)

\[R \]

γ→∞
Different Regions and Thresholds

\[\gamma \rightarrow \infty \]

Region 3_

Region 3_

Region 2

\[\gamma \rightarrow \infty \]

Region 3_

Region 3_

0 10 20 30 40 50 60 70 80 90

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0
Main Results

Different Regions and Thresholds

\[\gamma (\text{dB}) \]

\[R_c(\gamma) \]

\[R_l(\gamma) \]

\[R_{bp}(\gamma) \]

\[\gamma \to \infty \]
Realistic Case Sparse Gaussian example \((p = 0.1)\)

Need to operate above \(R_i(\gamma)\)
Realistic Case in log Scale Sparse Gaussian example ($p = 0.1$)

- MMSE in Region 3 decreases exponentially with γ.
The correct η jumps, leading to the discontinuity at $R_l(\gamma)$.

Main Results

Fixed Point v.s. Free Energy [Krzakala et al. ’12]

![Graph showing the relationship between Free Energy and η for different γ values. The graph illustrates the discontinuity at $R_l(\gamma)$.](image)
Main Results

Fixed Point v.s. Free Energy [Krzakala et al. ’12]

The correct η jumps, leading to the discontinuity at $R_l(\gamma)$
Fixed Point v.s. Free Energy [Krzakala et al. ’12]

The correct η jumps, leading to the discontinuity at $R_l(\gamma)$
Fixed Point v.s. Free Energy [Krzakala et al. ’12]

- The correct η jumps, leading to the discontinuity at $R_l(\gamma)$
Main Results

Thresholds for Possible CS Reconstruction

- **Noiseless case**
 - ℓ_1 minimization: $R \gtrsim -p \log(p)$
 [Donoho & Tanner 06]
 - ℓ_0 minimization: $R > p$

- **Low noise case:** $R > R_r = p$
 [Wu & Verdú ’11]

- **Noisier case**
 - With ultimate reconstruction method: $R > R_l(\gamma)$
 NEW!
 - With BP: ???
Evaluation of BP Performance
BP Results by Running GAMP [Rangan ’10]
Sparse Gaussian input, $p = 0.1$, $N = 10^4$, 100 repetitions

- Suboptimal in Region 3
- BP operates at smallest η
- Still have room for improvement
In realistic case, BP must operate above $R_{bp}(\gamma)$.
Summary
Summary

- For CS, reconstruction error behaves differently in different regions.
- BP does not yield satisfactory performance below $R_{bp}(\gamma)$.
- Still have room for improvement in Region 3.
- Noisier case:
 - With ultimate reconstruction method: $R > R_i(\gamma)$.
 - With BP: $R > R_{bp}(\gamma)$.
Thank you!