Quantum Computing Tutorial

Dror Baron

ECE Colloquium
NC State University
August 2022
Motivation

- **Quantum computing** can provide major speedups over *classical* (non-quantum) counterparts

- **Factoring** N-bit integer into 2 prime factors
 - Classical approach requires $\sim \exp(N^{1/3})$ operations
 - Shor’s algorithm requires $< N^3$ quantum operations [Shor 1994]
 - Applications in secrecy / privacy

- **Grover search** [Grover 1996]
 - Finds pattern in length-N database in \sqrt{N} quantum operations
 - Can accelerate large range of algorithms
Motivation

• Quantum Fourier transform
 • Fourier analysis used as workhorse in many scientific algorithms
 • Length-N FFT requires $N\log_2(N)$ classical operations
 • Only n^2 quantum operations, $n=\log_2(N)$

• Integer programming – used in portfolio optimization
How do quantum computers work?

- Paraphrasing Ryan O’Donnell:
 Quantum computers are good at looking for clues in (very) long implicitly represented lists of numbers

- Will revisit this interpretation
Classical computing revisited

• We’ll represent classical computation with linear algebra
• Will process bits, 0 and 1
• Classical gates - NOT, AND, OR
• Universality – can implement any Boolean function using these gates (only need NAND / NOR)
Physical reality

• Landauer:
 “Information is physical”

• Need to comply with physical reality
• Classical gates implemented physically w/transistors

• Quantum computing requires quantum mechanics familiarity
Postulates of Quantum Mechanics
Any isolated physical system is associated with complex inner product space called *state space*

- To keep simple, will ignore complex numbers aspect

- Inner product (dot product), $\langle [\alpha] | [\gamma] \rangle = \alpha \gamma + \beta \delta$ correlation measure between vectors

- System described by *state vector*
Qubits

• Classical bits, 0 and 1
• Quantum counterparts $|0\rangle$ and $|1\rangle$, respectively
 • Dirac notation; pronounced “ket zero” and “ket one”
 • Equal to length-2 column vectors, $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

• Consider superposition, $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$

• Quantum amplitudes $\alpha, \beta \in \mathbb{C}$ must satisfy $|\alpha|^2 + |\beta|^2 = 1$
 • Why? $|\alpha|^2, |\beta|^2$ probabilities of measuring 0, 1 (Postulate 3)
 • Unit norm constraint $\rightarrow \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ on unit circle
• $|0\rangle$, $|1\rangle$, $|+\rangle$, $|\rightarrow\rangle$ all on unit circle
• What do quantum amplitudes "mean?" Let's flow with math
• Bloch sphere - complex amplitude extension
Postulate 2 [Nielsen & Chuang, 2000]

Evolution of closed quantum system is described by unitary transformation U, i.e., $|\psi\rangle \rightarrow |\psi'\rangle = U |\psi\rangle$

- What’s a *unitary transformation* U?
 - Rotation / flip
 - Preserves length \rightarrow unit norms vectors remain unit norm
 - Unitary transformations are *linear operators*

- *Quantum gates* rotate the state vector
Example – X gate

• Quantum analog of classical NOT gate
 • $X|0> = |1>$, $X|1> = |0>$

• Gates are linear (unitary) \Rightarrow $X(\alpha|0> + \beta|1>) = \alpha|1> + \beta|0>$

• X gate has matrix form, $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $X \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \beta \\ \alpha \end{bmatrix}$

• Note that $X^2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$ identity matrix
Example – Hadamard gate

- Hadamard gate, \(H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \)
- Let’s apply \(H \) to standard kets:
 - \(H|0> = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = |+> \)
 - \(H|1> = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = |-> \)
- Note that \(H^2 = I \); these aren’t coincidences 😊

\[|\psi> \xrightarrow{H} |\psi'> = H|\psi> \]

input

output
Postulate 3

\[\Pr(\text{measure 0}) = |\alpha|^2, \quad \Pr(\text{measure 1}) = |\beta|^2 \]

- We now understand why state vectors must have unit norm
 - \[||\psi||_2^2 = |\alpha|^2 + |\beta|^2 = 1 \]
- After measuring, \(|\psi\rangle\) “collapses” to \(|0\rangle\) or \(|1\rangle\); we lose information when we measure
More about measuring

• We often interpret randomness as insufficient modeling
• In quantum mechanics, *randomness is part of nature*

• No need to measure in 0/1 basis
 • To measure in +/- basis, can rotate then measure
 • Can measure in any orthonormal basis

• Measurements are classical \(\rightarrow\) can post-process classically
Quantum system

- Typical quantum system involves initialization, application of unitary transformations, & measurement
Multi-Qubit System
Multiple qubits

• Start with 2 qubits; 4 possible classical pairs: 00, 01, 10, & 11
• Quantum system is superposition of computational basis states, $|00>, |01>, |10>, & |11>$

• State vector
 \[\begin{bmatrix}
 \alpha \\
 \beta \\
 \gamma \\
 \delta \\
 \end{bmatrix} \]
 • Amplitudes are Greek letter amplitudes
 • Corresponding classical states are numbers (right side)
• Unit norm vector $\Rightarrow |\alpha|^2 + |\beta|^2 + |\gamma|^2 + |\delta|^2 = 1$

• Can be extended to n qubits \Rightarrow length-N=2^n unit norm vector
Example - 2 Hadamard gates

• Inputs are both $|0>$, denoted by $|00>$ or $|0>|0>$

• Outputs are both $|+>$, let’s analyze:

$|+>|+> = \frac{1}{\sqrt{2}}(|0>+|1>) \frac{1}{\sqrt{2}}(|0>+|1>) = \frac{1}{2}(|0>+|1>)(|0>+|1>)$

$= \frac{1}{2}(|00>+|01> + |10> + |11>)$

• $(1/2)^2 = 1/4 \rightarrow$ each of 4 pairs has probability $1/4 \rightarrow$ unit norm

• We have *uniform superposition*; n Hadamards create uniform superposition of $N=2^n$ computational basis states
Example – controlled NOT (CNOT)

- **Inputs**: control (c_{in}) and target (t_{in})
- **Outputs**: $c_{out} = c_{in}$, $t_{out} = c_{in} \oplus t_{in}$ (XOR function)
- Classically, $00 \rightarrow 00$, $01 \rightarrow 01$, $10 \rightarrow 11$, $11 \rightarrow 10$
- Express as matrix, $|\psi'\rangle = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} |\psi\rangle$
 - $|\psi\rangle = |c_{in}t_{in}\rangle$, $|\psi'\rangle = |c_{out}t_{out}\rangle$
- Example – CNOT($0.6|00\rangle+0.8|10\rangle$) = $0.6|00\rangle+0.8|11\rangle$ (uses linearity)
 - Note that $0.6^2+0.8^2=1$
Is this just math?

• Audience may think that these are just notations that follow 3 simple rules

• *Things get interesting with entanglement!*
Entanglement
[a.k.a. Spooky Action at a Distance]
Entangling 2 qubits

• Time direction is left to right
• Will analyze circuit left to right

• Initialize 2 qubits as 00, $|\psi_1\rangle = |00\rangle = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

• First qubit goes through Hadamard $\rightarrow |\psi_2\rangle = |+0\rangle = \frac{|00\rangle + |10\rangle}{\sqrt{2}} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 1 \\ \frac{1}{\sqrt{2}} \end{bmatrix}$

• CNOT maps $|00\rangle$ and $|10\rangle$ to $|00\rangle$ and $|11\rangle$ $\rightarrow |\psi_3\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}$

• The 2 qubits are now entangled; why?
Bell state

- Circuit generates $\frac{|00\rangle + |11\rangle}{\sqrt{2}}$ known as Bell pair

- Can Bell pair be “product state” of 2 independent (unentangled) qubits?
 - Take any $|\psi_a\rangle = \alpha |0\rangle + \beta |1\rangle$ and $|\psi_b\rangle = \gamma |0\rangle + \delta |1\rangle$
 - $|\psi_a \psi_b\rangle = \alpha \gamma |00\rangle + \alpha \delta |01\rangle + \beta \gamma |10\rangle + \beta \delta |11\rangle$
 - Bell pair requires $\alpha \delta = \beta \gamma = 0$, hence either $\alpha \gamma$ or $\beta \delta$ must be zero

- Contradiction \rightarrow Bell pair isn’t “product state”
Experiment – Earth

- Dror Baron and Bojko Bakalov (NCSU math department) on Earth
- They each have a qubit
- They generate a Bell pair
• Dror and Bojko hand over their qubits to Io and Tony
• Io and Tony carefully synchronize their chronometers
Experiment – Venus & Mars

- Io flies to Venus; Tony teleports to Mars
• Io measures the qubit at midnight (Earth time)
• Tony measures it 1 second later (he was napping)
• Several minutes later (speed of light to Earth), Dror & Bojko confirm that the measurements are identical
How did that happen?

• Circuit generates Bell pair $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$

• Io measures $|0\rangle \rightarrow$ qubits collapse to $|00\rangle \rightarrow$ Tony measures $|0\rangle$

• Io measures $|1\rangle \rightarrow$ qubits collapse to $|11\rangle \rightarrow$ Tony measures $|1\rangle$

• This is simultaneous coordination, *not* communication

• Qubits are *entangled*; any action (rotate, measure, ...) acting on one also acts on the other simultaneously

• Einstein called this “spooky action at a distance”

• This has been experimentally confirmed (not by Io & Tony)
Hidden state?

• Einstein, Podolsky, & Rosen (EPR) suspected that nature maintains “hidden state”
 • Maybe Dror & Bojko secretly coordinate qubits in advance
 • They don’t tell Io & Tony

• Bell suggested experiment to evaluate EPR
• Aspect (1982) showed experimentally that EPR were wrong
Physical locality

• Physical locality principle assumes that object influenced only by local surroundings
• Aspect’s experiments seems to invalidate this

• Quantum mechanics is counter-intuitive, because our daily life proceeds at macro scale

• David Mermin suggests how to deal with flawed intuition: "shut up and calculate"
What can Quantum Systems do?
Emulating classical computation

• “Information is physical” → information processing systems must comply with physical reality

• Unitary matrices are reversible → quantum functions must be reversible

• Some classical functions aren’t reversible (e.g., OR)
• But classical functions have reversible quantum counterparts with extra ancilla qubits

• Universality – can implement any unitary transformation (including Boolean functions) using 1- and 2-qubit gates (Hadamard, CNOT, ...)

Linear algebra playground

• Existing hardware schemes can implement these prototype 1- and 2-qubit gates
 • Ion traps, superconducting qubits...
 • All existing schemes are noisy and have some weaknesses

• We now have linear algebra playground
 • Unit vectors of length $N=2^n$
 • Can apply any n-qubit unitary transformation
 • Measure at the end
Deutsch Algorithm
[Deutsch 1985]
Query model

- Black box (BB) classical function, f(x), operates on 1-bit input x
 - n>1 bit inputs coming up
 - BB could be \(f(x) \in \{x, \text{NOT}(x), 0, 1\} \)
- Deutsch’s problem: determine whether \(f(0) = f(1) \)

- How much computation do we need to solve Deutsch’s problem?
 - y can be recovered from x, \(y \oplus f(x) \rightarrow U_f \) reversible \(\rightarrow \) can implement \(U_f \) in quantum
 - #quantum operations (\(U_f \)) same order as #classical (f) (c.f., [Nielsen & Chuang 2000])
- What matters is # queries

- Classical: must compute \(f(0) \) & \(f(1) \) (2 queries)
- Quantum: only need 1 quantum BB query
Deutsch algorithm

- Will analyze Deutsch algorithm step by step
- Initialization $|\psi_1> = |01>$
Deutsch algorithm

- **Initialization** $|\psi_1\rangle = |01\rangle$
- **Apply Hadamard** $|\psi_2\rangle = |+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$
Deutsch algorithm

• Apply Hadamard $|\psi_2> = |+-> = \frac{|0> + |1>}{\sqrt{2}}$

• **Claim:** $U_f|x> = (-1)^{f(x)}|x>$

• **Proof:**

 • $x = 0$: $U_f|0> = \frac{1}{\sqrt{2}}(U_f|00> - U_f|01>) = \frac{1}{\sqrt{2}}(|0f(0)> - |0f(0)^C>) = (-1)^{f(0)}|0> = (-1)^{f(x)}|x>

 • $x = 1$: $U_f|1> = \frac{1}{\sqrt{2}}(U_f|10> - U_f|11>) = \frac{1}{\sqrt{2}}(|1f(1)> - |1f(1)^C>) = (-1)^{f(1)}|1> = (-1)^{f(x)}|x>$
Deutsch algorithm

- Apply Hadamard $|\psi_2> = |+-> = \frac{|0-> + |1->}{\sqrt{2}}$

- **Claim**: $U_f|x-> = (-1)^{f(x)}|x->$

- Apply U_f, $|\psi_3> = \frac{(-1)^{f(0)}|0-> + (-1)^{f(1)}|1->}{\sqrt{2}}$
Deutsch algorithm

- Apply U_f, $|\psi_3\rangle = \frac{(-1)^{f(0)}|0\rangle + (-1)^{f(1)}|1\rangle}{\sqrt{2}}$

- Recall Deutsch’s problem:
 - If $f(0) = f(1)$, then $|\psi_3\rangle = \pm \frac{|0\rangle + |1\rangle}{\sqrt{2}} \Rightarrow |\psi_4\rangle = \pm |01\rangle$
 - If $f(0) \neq f(1)$, then $|\psi_3\rangle = \pm \frac{|0\rangle - |1\rangle}{\sqrt{2}} \Rightarrow |\psi_4\rangle = \pm |11\rangle$

- We solve Deutsch’s problem based on the first (upper) output
Deutsch-Jozsa problem: if \(f(x) \) is a constant function, or is it balanced (average 0)?

- **Classical**: need to query \(2^{n-1}+1 \) times
- **Quantum**: only need 1 quantum BB query

Exponential separation 😊
Deutsch-Jozsa problem: if \(f(x) \) const function, or is it balanced (average 0)?

- Hadamard transform analogous to Fourier
- DC coefficient is Hadamard for \(0^n \) “frequency”
- \(\Pr(\text{measure } 0^n \text{ at output}) = \text{squared magnitude of DC coefficient} \)
- Const \(f(x) \): DC \(\pm 1 \) → output always \(0^n \)
- Balanced \(f(x) \): DC is 0 → output never \(0^n \)
• **Rotate** – produce uniform superposition of all 2^n computational basis states using Hadamard transform

• **Compute** - black box computes U_f in parallel on all 2^n

• **Rotate** – Hadamard analyzes frequency properties of data

• More algorithms use analogous approach
More
Baron sabbatical

• Was on virtual sabbatical at Harvard, 2021-2022

• Studied quantum computing
 • Nielsen & Chuang, Quantum Computation and Quantum Information
 • Wilde, Quantum Information Theory
 • Discussions with numerous researchers
Research focus

- Quantum gates 3+ orders of magnitude slower than classical
- Quantum error correction will add another 3+
- In medium term, quantum “supremacy” likely requires exponential speedup

- Exponential speedups primarily hidden subgroup problems (HSP)
 - Group theory problem has coset structure
 - Cosets implicitly contain structure of function, but structure unknown
 - HSP identifies coset structure with few queries

- We saw “rotate compute rotate” paradigm using Hadamard
 - Quantum Fourier transform also exponentially faster
 - Want to identify problems that fit into HSP framework
 - Collaboration with Bojko Bakolov (NCSU math department)
We’ve only scratched the surface

• No cloning theorem – can’t clone quantum state
 • There’s no “fanout” as in classical circuits 😞

• Quantum information:
 • Teleportation (you can teleport the quantum state, not the particle itself) 😊
 • Superdense coding – one qubit contains 2+ classical bits of information 😊

• Quantum circuitry is noisy → error correction is critical

• Quantum ML (studied at NC State by Carlos Ortiz Marrero)

• Exponential speedups simulating quantum mechanical systems
 • Applications to pharma, materials design
How can YOU get involved?
Opportunities at NC State

• IBM quantum hub at NC State
 • Part of community of companies, universities, ...
 • Numerous researchers at NCSU
 • You can access quantum computers (via cloud)

• Courses
 • Fall 2022:
 CSC591/ECE592; quantum computing; Prof. Frank Mueller
 • Spring 2022:
 ECE792; advanced topics; Prof. Huiyang Zhou
 ECE492/ECE592; signal processing & quantum; Prof. Dror Baron
• More courses in other departments
More opportunities

• We’re designing graduate quantum certificate (4 courses)

• Quantum hub workshop – Dec 2022 or Jan 2023
 • Two days of presentations
 • Multiple tutorial presentations should make things approachable
 • Will also have invited speakers, panel discussion, more
Summary
Summary

• Recall Ryan O’Donnell:
 Quantum computers are good at looking for clues in (very) long implicitly represented lists of numbers

• Clues – Hadamard transform resembles Fourier transform; transform coefficients provide clues about data

• List of numbers (data) generated by running black box on uniform superposition

• Veeeexveery long list (e.g., N=2^n, n=500)
Summary

• Quantum computing is rapidly emerging area

• Based on quantum mechanics postulates/rules

• We perform physics experiment in linear algebra playground

• Polynominal / exponential speedups BUT narrow algorithmic areas → classical won’t be obsolete any time soon
Thanks!