
A Unified View of Non-monotonic Core Selection
and Application Steering in Heterogeneous

Chip Multiprocessors

Sandeep Navada*, Niket K. Choudhary*,
Salil V. Wadhavkar*

CPU Design Center
Qualcomm

Raleigh, NC, USA
{snavada, niketc, salilw}@qti.qualcomm.com

Eric Rotenberg
Department of Electrical & Computer Engineering

North Carolina State University
Raleigh, NC, USA
ericro@ncsu.edu

Abstract—A single-ISA heterogeneous chip multiprocessor
(HCMP) is an attractive substrate to improve single-thread
performance and energy efficiency in the dark silicon era. We
consider HCMPs comprised of non-monotonic core types where
each core type is performance-optimized to different instruction-
level behavior and hence cannot be ranked – different program
phases achieve their highest performance on different cores.
Although non-monotonic heterogeneous designs offer higher
performance potential than either monotonic heterogeneous
designs or homogeneous designs, steering applications to the
best-performing core is challenging due to performance
ambiguity of core types.

In this paper, we present a unified view of selecting non-
monotonic core types at design-time and steering program phases
to cores at run-time. After comprehensive evaluation, we found
that with N core types, the optimal HCMP for single-thread
performance is comprised of an “average core” type coupled
with N-1 “accelerator core” types that relieve distinct resource
bottlenecks in the average core. This inspires a complementary
steering algorithm in which a running program is continuously
diagnosed for bottlenecks on the current core. If any are
observed, the program is migrated to an accelerator core that
relieves any of the bottlenecks and does not worsen any of them.
If no accelerator core satisfies this condition, then the average
core is selected.

In our evaluation, we show that a 4-core-type HCMP
improves single-thread performance up to 76% and 15% on
average over a homogeneous chip multiprocessor, and our
steering algorithm is able to capture most of this performance
gain. Further, we show that our steering algorithm on a 4-core-
type HCMP is, on average, 33% more power-efficient
(BIPS3/watt) than a homogeneous chip multiprocessor.

Keywords - heterogeneous multi-core processor, adaptive
processor, superscalar, core customization, thread migration,
instruction-level parallelism, single-thread performance1

*Sandeep Navada, Niket K. Choudhary and Salil V. Wadhavkar contributed to
this paper when they were graduate students in the Department of Electrical
and Computer Engineering at North Carolina State University.

I. INTRODUCTION

Industry has fully embraced multi-core chip design for
platforms ranging from mobile phones to desktops to
supercomputers. However, as we enter the “dark silicon” era
[10][12], the number of cores that can be active is limited by
the chip’s power budget and is less than the number of cores
that can be fit on the chip. Specialization is one way to profit
from dark silicon. While adding more of the same core design
is of little use in this context, introducing differently-designed
cores enables run-time adaptation: migrating a thread among a
dedicated ensemble of different core types as the thread’s
instruction-level behavior changes. Matching varying
instruction-level behavior to cores optimized for different
behaviors, can lead to faster and more energy-efficient
execution. A multi-core architecture with multiple core types,
which are functionally-equivalent but microarchitecturally-
diverse, is called a single-ISA heterogeneous chip
multiprocessor (HCMP).

Early HCMP designs were limited to monotonic core
types: they could be clearly ranked from high-
performance/high-power to low-performance/low-power
independent of the application, providing an unambiguous
performance and power spectrum [18][19][39]. A more
powerful class of HCMP employs non-monotonic core types
[20]: each core type is performance-optimized to different
instruction-level behavior and hence cannot be ranked –
different applications achieve their highest performance on
different cores [6][27][28]. Although non-monotonic
heterogeneous designs offer higher performance potential than
either monotonic heterogeneous designs or homogeneous
designs, steering applications to the best-performing core is
challenging due to performance ambiguity of core types.
Moreover, with non-monotonic cores, accurate steering is
mandatory. Without it, performance can actually worsen since
cores are tuned. Steering completes what was started by
architecting non-monotonic cores in the first place.

In this paper, we demonstrate that selecting non-
monotonic core types at design-time and steering programs to
cores at run-time, are actually “two sides of the same coin”.

We performed an exhaustive RTL-based [6] design space
exploration of HCMPs with one through four superscalar core
types that achieve the highest performance on 39 phases from
SPEC. The addition of more core types yields more
performance due to tailoring cores to diverse instruction-level
behaviors (control-flow, data-flow, cache misses, etc.). With
only one core type, the best core in the design space is a rather
“average” core that strikes a reasonable balance between
instruction-level parallelism (ILP) and frequency. If more core
types are allowed, it turns out that the average core (i.e., best
homogeneous core) is still selected and additional core types
are selected that relieve distinct resource bottlenecks in the
average core, that constrain the performance of “outlier”
program phases: a core type with larger window size (window
bottleneck); one with higher issue width (width bottleneck);
one with higher frequency (frequency bottleneck); and so
forth. In summary, with N core types, the optimal HCMP for
single-thread performance is comprised of an “average core”
type coupled with N-1 “accelerator core” types that relieve
distinct resource bottlenecks in the average core.

The fact that the selection of non-monotonic cores is
empirically driven by average resource provisioning (average
core) coupled with distinct resource bottleneck relief
(accelerator cores), inspires a complementary steering
algorithm. The running program is continuously diagnosed for
bottlenecks on the current core. If any are observed, the
program is migrated to an accelerator core that relieves any of
the bottlenecks and does not worsen any of them. If no
accelerator core satisfies this condition, then the average core
is selected.

The average core / accelerator core phenomenon is
arguably a result of our objective function: maximize the
performance of one thread by providing it a private ensemble
of diverse cores, essentially a single adaptive processor or
core-selectable processor [26] whereby adaptivity is achieved
by thread migration. We also take the paper in several other
directions.
 Power-constrained HCMP: We constrain the core-

selectable processor to a power budget. While the
constituent cores change for different budgets, we
empirically observe that the best homogeneous core type
for this power budget always shows up as the average
core type and the other core types relieve distinct
bottlenecks in it. Thus, our steering approach is robust
from less-constrained to more-constrained designs.

 Multi-programmed workload: Our steering algorithm is
adapted to support multiple threads within the core-
selectable processor. Threads decide locally on their
preferred core and contention is resolved globally by
conflict resolving mechanisms like ranking threads’
bottleneck intensities, etc.

 Arbitrary HCMP design: We show how to apply
bottleneck-driven steering to arbitrary HCMP designs,
regardless of which criteria are used to guide the selection
of cores at design-time. The idea is that one of the core
types is the best on average among all core types
available (even if it is not the best homogeneous core

type), and bottleneck relief (i.e., strengths) of other core
types can always be gauged relative to it.
In our evaluation, we show that the best 4-core-type

HCMP improves single-thread performance up to 76% and
15% on average over the best homogeneous chip
multiprocessor, and our steering algorithm is able to capture
most of this performance gain. We also show that our steering
algorithm on the 4-core-type HCMP is, on average, 33% more
power-efficient (BIPS3/watt) than the homogeneous chip
multiprocessor.

The significance and contribution of our work can be
summarized as follows:
1) First complete proposal to accelerate a single thread

using a core-selectable processor: This paper, and its
precursors [6][26][27], comprise the only work focused
on architecting and operating multiple diverse cores as
one logical core to minimize latency of a single thread.
Most of the related work in this area pair one big OOO
core type with one little in-order core type (what ARM
calls big.LITTLE [14]), or other similar fast/slow hybrid,
where the objective is to either minimize energy
consumption of a single thread while minimizing latency
impact [18][22] or maximize throughput/watt/area of
multiprogrammed, multi-threaded workloads
[3][8][17][19][32][35][37]. Our work is unique in
minimizing latency under low contention; in turn, this
requires co-designing the ensemble of non-monotonic
core types and the steering algorithm, rather than
assuming a de facto monotonic HCMP. What little prior
work there is on design exploration of core types, is also
focused on throughput/watt/area of multiprogrammed
workloads, does not factor-in frequency, and does not
provide a companion steering algorithm [20].

2) Average core / accelerator core phenomenon: We are the
first to empirically discover the average core/accelerator
cores phenomenon of HCMPs architected for single-
thread performance. This discovery was critical to coming
upon the idea of using very simple distinctive bottleneck
analysis for steering.

3) Bottleneck-based steering approach: We propose a
simple and intuitive, bottleneck-based steering algorithm
for HCMPs. It captures most of the performance gain in
an HCMP and outperforms the current state-of-art
steering algorithm (sampling algorithm).

4) Sensitivity studies: (i) We show that the average core /
accelerator core phenomenon still holds for power-
constrained core-selectable processors. (ii) We show how
to adapt the steering algorithm for multiple threads
sharing the core-selectable processor. (iii) We show that
bottleneck-based steering can be applied to arbitrary
HCMP designs because the designer can always identify a
best-on-average core type and gauge other core types
against it.

The rest of the paper is organized as follows. Background
on processor cores is presented in Section II. Section III
explains our process of architecting the non-monotonic

HCMP. Section IV details our technique of using bottleneck
information to steer applications in a non-monotonic HCMP.
Experimental methodology and results are presented in
Sections V and VI, respectively. Section VII discusses related
work. Finally, Section VIII concludes the paper.

II. BACKGROUND ON PROCESSOR CORES

A single-ISA heterogeneous chip multiprocessor
(HCMP) consists of multiple differently-designed core types.
A core type can be varied along three dimensions: structure
sizes (issue queue, load and store queues, physical register file
/ reorder buffer, caches, and predictors), pipeline stage widths
and clock period.

In a core, there is a tradeoff between exploiting more
instruction-level parallelism (ILP) and achieving a higher
clock frequency, and this tradeoff works out differently for
different program phases. Exploiting more ILP requires
increasing the sizes of ILP-extracting structures and/or
increasing the widths of pipeline stages. The additional circuit
complexity may increase cycle time, however. Different
program phases have different amounts and distributions of
ILP (as well as memory-level parallelism), causing them to be
characterized by different optimal core types.

III. CORE SELECTION IN HCMP

Selecting the core-types, which make up a good HCMP
design, is not straightforward because each application phase
prefers a different core-type. As we can only have a limited
number of core-types in a given HCMP, this results in a
compromise. To choose the core-types, which make up the
optimal HCMP design, we perform a rigorous design space
exploration using genetic algorithms [11] for the SPEC
benchmark suite.

Section IIIA discusses our methodology for architecting
an N-core-type HCMP. Section IIIB describes the optimal
unconstrained HCMP design with 2, 3 and 4 core-types.
Section IIIC discusses the optimal power-constrained HCMP
design.

A. Methodology

1) Basis of Core Design Space: FabScalar Toolset
The core design space is created using FabScalar’s

Canonical Superscalar Template and Canonical Pipeline Stage
Library (CPSL) [6]. The template has the following canonical
pipeline stages: Fetch, Decode, Rename, Dispatch, Issue,
Register Read, Execute, Writeback, and Retire. The CPSL
provides different register-transfer-level (RTL) designs for
each canonical pipeline stage, that differ in their superscalar
width and depth of sub-pipelining (pipelining within a
canonical stage). Sizes of microarchitectural structures are
parameterized.

Instructions-per-cycle (IPC), clock period, and power,
are measured as follows.

IPC is obtained using FabScalar’s cycle-accurate C++
simulator, which has been validated against FabScalar’s RTL
designs [6].

To get a reliable estimate of the clock period, we make
use of FabScalar’s Performance-Power-Area (PPA) tool [7].

PPA provides propagation delays for each and every pipeline
stage design in the entire CPSL, and these delays are from
logic synthesis (for logic) and FabMem (for highly-ported
RAMs/CAMs). (For caches, PPA uses CACTI [40], with its
device and wire parameters adjusted to match those of the
standard cell library used for synthesis [6].) The CPSL allows
composing thousands of cores and their cycle times are known
from the detailed, comprehensive CPSL characterization just
described.

For power modeling, we again use FabScalar’s cycle-
accurate C++ simulator, which, like the Wattch method [4],
combines per-unit energy numbers with their activity counts.
Unlike Wattch, the per-unit dynamic/static energy numbers
come from the FabScalar PPA tool, which provides per-unit
energy numbers from logic synthesis and FabMem, for
hundreds of fine-grain components in the core. Moreover, per-
unit energies for all superscalar widths, depths, and structure
sizes are fully represented within PPA.

2) Core Design Space
The core design space is spanned by the independent

design parameters enumerated in Table I. The core design
space consists of design points created by varying the clock
period and the complexity (structure sizes and superscalar
widths) of different pipeline stages.

Depths of pipeline stages are dependent design
parameters. For a given design point, the depth of a pipeline
stage is the degree of sub-pipelining required so that its
complexity can fit in the clock period.

TABLE I: MICROARCHITECTURAL DESIGN PARAMETERS.

The cartesian product of all parameter values in Table I,
gives 3.3 million design points. Not all of these design points
are valid, however. Firstly, as we are using FabScalar’s CPSL,
a pipeline stage cannot be made arbitrarily deep. Thus, some
design points cannot meet their clock periods. Secondly, for a
given pipeline stage, only those design points are considered
that have the largest structure(s) for a given width, depth, and
frequency of that pipeline stage. By performing this design
space pruning, we are able to restrict it to 13,966 design
points.

We assume private L1 instruction and data caches, and a
shared L2 cache. Block size is 64 bytes, L1 associativity is 4,
and L2 associativity is 8. The memory access latency is fixed
at 100 ns. We use a gshare branch predictor with 64K entries,
a branch target buffer with 4K entries and a return address
stack with 16 entries.

Parameter Value Range Number

Front end width 2, 3, 4, 5, 6, 7, 8 7
Issue width 2, 3, 4, 5, 6, 7, 8 7
Phys. Reg. File size 64, 128, 192, 256, 384, 512 6
Issue Queue size 16, 24, 32, 48, 64, 96, 128 7
Load Queue size/
Store Queue size

8/8, 16/16, 24/24, 32/32,
40/40, 48/48, 56/56, 64/64

8

L1 Instr. Cache size (KB) 8, 16, 32, 64, 128 5
L1 Data Cache size (KB) 8, 16, 32, 64, 128 5
L2 Cache size 2MB 1
Clock Period 0.5→1.2 ns (delta=0.1ns) 8

3) Core Selection Algorithm
An HCMP consists of N core-types selected from the

core design space. Hence, the HCMP design space consists of
every combination of N core-types selected from the core
design space. Clearly, finding the optimal HCMP design is a
big search endeavor. To give an idea of the size of the HCMP
design space, let us consider the 4-core-type HCMP. The
design space of the 4-core-type HCMP has every 4-core
combination selected from 13,966 design points in the core
design space. This amounts to 1.59*1015 HCMP design points.
This is a huge design space and it is impossible to
exhaustively search it.

Hence, we use a genetic algorithm [11] to find the best
N-core-type HCMP design. Please note that every core-type in
the entire core design space (13,966 design points) is first
evaluated on 39 SimPoint phases [36] (10 million instructions
each) obtained from the SPEC benchmark suite. The fully-
characterized core design space serves as input to the genetic
algorithm for finding the best N-core-type HCMP. For the
genetic algorithm, an individual is a given N-core-type HCMP
design selected from the HCMP design space and the
objective function is the harmonic mean of the performance
values (billions-of-instructions-per-second (BIPS)) of the 39
phases, assuming each phase is steered to its best core-type
out of the N core-types. We use the standard mutation,
crossover and selection operators in the genetic algorithm. The
population size is 100 individuals and we keep running until
the best HCMP design does not change for 10,000
generations.

We use this methodology to find the core configurations
of 2-core-type, 3-core-type and 4-core-type HCMPs. We
validated the genetic algorithm results with an exhaustive
search for 1-core-type, 2-core-type and 3-core-type HCMPs
(as exhaustive search is feasible for them). The next section
discusses the core configurations.

B. Unconstrained HCMP Design

The core-types in the optimal 2-core-type, 3-core-type
and 4-core-type HCMPs are given in Table II. The
microarchitecture configurations of these core-types are
shown in Table III. Note that the performance of the 4-core-
type HCMP is within 98% of the optimal performance bound
of having customized core-types for each of the SPEC phases
used – which is why we stopped at 4-core-types.

TABLE II: CORE-TYPES IN THE OPTIMAL 2-CORE-TYPE, 3-CORE-TYPE AND 4-
CORE-TYPE HCMPS. ALSO SHOWN IS THE BEST SINGLE CORE-TYPE FOR A

HOMOGENEOUS DESIGN.

Number of core-types in HCMP Core combination
1 (homogeneous design) A
2 A, LW
3 A, LW, N
4 A, L, N, W

We see that, irrespective of the number of core-types, the
A core-type – which is also the best single core-type for a
homogeneous design (called the “average” core-type) – is
always present in the optimal heterogeneous design. We
further see that the other core-types in the optimal HCMP
(called “accelerator” core-types) aim to remove distinct

bottlenecks. In the optimal 2-core-type HCMP, in addition to
core-type A, we have core-type LW, which has both a larger
window (L) and a wider issue width (W). Core-type LW
targets application phases with a window bottleneck or a
width bottleneck. In addition to core-types A and LW, the
optimal 3-core-type HCMP has core-type N (narrow core) that
focuses on application phases with a severe ILP bottleneck. In
the optimal 4-core-type HCMP, in addition to retaining core-
types A and N, two others emerge: core-type L (large-window
core) which targets application phases with a window (reorder
buffer, issue queue) bottleneck, and core-type W (wide core)
which focuses on application phases with a width (fetch width,
issue width) bottleneck. In other words, in the optimal 4-core-
type HCMP, core-type L targets application phases with
distant ILP, core-type W targets application phases with
nearby ILP, core-type N targets application phases with low
ILP, and the average core-type targets all other application
phases.

TABLE III: MICROARCHITECTURE CONFIGURATIONS OF DIFFERENT CORE-
TYPES IN THE UNCONSTRAINED HCMP DESIGNS.

Core
Type

Clock
Period
(ns)

ILP-extracting
buffers
(IQ,LSQ,ROB)

Widths
(fetch, issue)

Caches (KB)
(I$, D$)

A 0.6 32, 128, 128 3, 4 64, 64
N 0.5 32, 64, 64 2, 2 16, 16
L 0.7 48, 128, 384 4, 4 128, 128
W 0.7 32, 128, 128 6, 6 128, 32
LW 0.7 48, 128, 192 4, 5 128, 32

The change between the 3-core-type and 4-core-type
HCMPs is quite interesting: the provisioning of one more
core-type causes core-type LW, present in the 3-core-type
HCMP, to be “split” into two, more specialized core-types L
and W that each concentrate on only one of the two
bottlenecks. Consequently, L is freed to be even larger than
LW (but same issue width as A) and W is freed to be even
wider than LW (but same size as A), so that each targets their
respective bottlenecks more effectively than the in-between
LW core-type.

In summary, the optimal HCMP consists of (1) an
average core-type that is comparable to current commercial
high-performance superscalar processors (4-issue, 128 in-
flight instructions, etc.) and is also the best single core-type in
a homogeneous design, (2) accelerator core-types that match
distinct and intuitive ILP behaviors. The next section uncovers
if this average core/accelerator core phenomenon is also
applicable for an HCMP design with a given single-thread
power budget.

C. Power-constrained HCMP Design

To understand the effect of imposing a power budget on
the optimal HCMP design, we vary the power budget from
1.5W to 5.5W at 1W intervals.

The optimal HCMP designs for peak power constraints
of 5.5W, 4.5W and 3.5W are found to be the same as that with
the unconstrained power budget. This shows that the optimal,
unconstrained HCMP design is still a good, power-efficient
design. This is due to the fact that frequency, like power,
provides a disincentive for making cores arbitrarily complex.

The core-types obtained in the optimal 4-core-type
HCMP design with a 2.5W peak power constraint are given in
Table IV. In Table IV, the A1 core-type is the best single
core-type for a homogeneous design (average core-type) for
the 2.5W power budget. Core-type W1 has a bigger width and
hence concentrates on application phases with a width
bottleneck. Core-type L1 has a bigger window and hence
focuses on application phases with a window bottleneck.
Core-type N1 has a higher clock frequency and hence targets
application phases with an ILP bottleneck.

TABLE IV: MICROARCHITECTURE CONFIGURATIONS OF DIFFERENT CORE-
TYPES IN THE 4-CORE-TYPE HCMP WITH 2.5W POWER BUDGET.

Core
Type

Clock
Period
(ns)

ILP-extracting
buffers
(IQ,LSQ,ROB)

Widths
(fetch, issue)

Caches (KB)
(I$, D$)

A1 0.6 32, 128, 128 3, 4 64, 64
N1 0.5 32, 64, 64 2, 2 16, 16
W1 0.7 48, 128, 128 4, 5 128, 32
L1 0.8 64, 128, 256 4, 5 32, 64

At a 1.5W power budget, we find that there is no
performance improvement if we have more than 3 core-types.
This is because at the 1.5W power budget, the HCMP design
is so constrained that there are only 202 feasible core-types
(compared to 13,966 core-types in the original design space).
The core-types obtained in the optimal 3-core-type HCMP
design with a 1.5W peak power constraint are given in Table
V.

TABLE V: MICROARCHITECTURE CONFIGURATIONS OF DIFFERENT CORE-
TYPES IN THE 3-CORE-TYPE HCMP WITH 1.5W POWER BUDGET.

Core
Type

Clock
Period
(ns)

ILP-extracting
buffers
(IQ,LSQ,ROB)

Widths
(fetch, issue)

Caches (KB)
(I$, D$)

A2 0.6 48, 32, 64 3, 2 64, 8
L2 1.0 16, 128, 192 3, 4 128, 128
W2 0.8 16, 64, 64 3, 6 128, 16

We see that irrespective of the number of core-types, the
average core-type always shows up in the optimal design for
both 2.5W and 1.5W power budgets.

IV. APPLICATION STEERING IN HCMP

Our steering algorithm works as follows. The program is
continuously monitored using performance counters, a counter
for each potential bottleneck. Every 10K instructions, the
counters are compared against threshold values (and reset for
monitoring in the next interval). If a given counter exceeds its
threshold, the application is deemed to suffer the
corresponding bottleneck in the measured interval on the
current core. If there is an accelerator core-type that relieves
any of the bottlenecks and does not worsen any of the
bottlenecks, the application will migrate to that core-type,
otherwise it will remain on or migrate to the average core-
type. Each accelerator core-type has its own bottleneck
signature which indicates its “bottleneck strengths”, i.e.,
bottlenecks that it relieves, and “bottleneck weaknesses”, i.e.,
bottlenecks that it worsens. The average core-type does not
have a bottleneck signature because it is the default and all
other core-types are gauged with respect to it.

Section IVA describes the performance counters and
their thresholds, for diagnosing the application’s bottlenecks.
Section IVB describes a simple methodology for designers to
derive bottleneck signatures for core-types in any HCMP
design, i.e., characterize bottleneck strengths and bottleneck
weaknesses for each core-type relative to the best core-type,
on average, in the design.

A. Diagnosing Bottlenecks

Table VI shows the performance counters used for
diagnosing bottlenecks [25] of the application in the current
interval on the current core-type.

TABLE VI: COUNTERS USED FOR DIAGNOSING BOTTLENECKS.
Performance counter Comments
Branch misprediction
stall counter

Number of cycles stalled due to branch
misprediction

L2-cache stall counter Number of cycles stalled due to L2 cache miss
I-cache stall counter Number of cycles instruction fetch is stalled

because of instruction cache miss
D-cache stall counter Number of cycles a load is stalled because of

data cache miss
Issue-width stall
counter

Number of cycles in which ready instructions
stall because of lack of issue width

Window stall counter Number of cycles in which instruction dispatch
is stalled because of a blocked issue queue,
reorder buffer, load queue or store queue.

Cycle counter Total cycles to execute the profiled segment

Only seven counters are used, hence, area and power
overheads for bottleneck diagnosis are negligible. Each of
these counters, except the cycle counter, denotes the cycles
stalled due to the corresponding resource or factor. Once the
measurement interval (10K instructions) is complete, the
counters are normalized with respect to the total cycle count of
the measurement interval. If a normalized performance
counter is above a certain threshold, then the corresponding
resource or factor is considered a bottleneck.

Thresholds are determined empirically using genetic
algorithms for each resource/factor and for each core-type.
We use a set of threshold values in the bottleneck signature
table as the input to the genetic algorithm. For training, we
select four benchmarks having different application
characteristics: bzip, mcf, swim and mgrid. The objective
function for the genetic algorithm is to maximize the
performance value obtained by bottleneck steering using the
given bottleneck signature table.

B. Deriving Bottleneck Signatures of Core-types

Bottleneck signatures of accelerator core-types are
derived by the designers of the HCMP at design-time. This
section describes a methodology for doing so.

The basic idea is to identify individual strengths and
weaknesses of an accelerator core-type relative to the average
core-type. For example, the strength of core-type L (large
core) is its larger window and its weakness is its lower
frequency. Then we identify the bottlenecks corresponding to
its strengths and weaknesses. For example, the bottleneck
corresponding to the strength of core-type L is the window
bottleneck. Similarly, the bottlenecks corresponding to the
weakness of core-type L are the L2 cache bottleneck and
branch misprediction bottleneck, because these ILP-degrading

factors serialize execution, and serial regions favor high
frequency over large window or width.

To generalize, let the bottlenecks corresponding to
strengths be S1, S2, S3,... and those corresponding to
weaknesses be W1, W2, W3,… Then, the signature of the
core-type is {S1 || S2 || S3...} && !{W1 || W2 || W3...}. In
other words, application phases having S1 or S2 or S3
bottlenecks and at the same time not having W1 or W2 or W3
bottlenecks, will prefer this core-type.

To demonstrate, we derive the bottleneck signatures of
core-types in the unconstrained 4-core-type HCMP. It has
core-types L, W, N and A. Core-type L has a bigger window
(reorder buffer, issue queue and load/store queues) than the
other core-types. Hence, application phases having a window
bottleneck will prefer core-type L. In addition, if the
application phase is to take advantage of a large window, it
should not have branch misprediction or L2 cache bottlenecks.
Similarly, core-type W has a wider width than all the other
core-types, hence, application phases having a width
bottleneck, no branch misprediction bottleneck, and no L2
cache bottleneck, will prefer core-type W. Core-type N has a
narrower width and a smaller window. However, it has a
higher clock frequency. Hence, application phases having low
ILP will prefer core-type N. That is, application phases having
branch misprediction or L2 cache bottlenecks will prefer core-
type N. The above discussion is summarized in Table VII(a).
If the diagnosed bottlenecks of the application do not match
any of the above signatures, then it is steered to core-type A.

TABLE VII(A): BOTTLENECK SIGNATURE TABLE FOR THE UNCONSTRAINED 4-
CORE-TYPE HCMP. (CORE-TYPE A DOES NOT HAVE A SIGNATURE.)

Bottleneck Signature Core type
Window && !(CTRL || L2) L
Width && !(CTRL || L2) W
(CTRL || L2) && !(Width) N

We can fine-tune the bottleneck signature table by taking
into account the I-cache and D-cache behaviors. We see that
core-type L has bigger caches. Hence, application phases
having I-cache or D-cache bottlenecks will prefer core-type L.
Similarly, core-type W has a bigger I-cache but a smaller D-
cache. Hence, application phases having an I-cache bottleneck
and no D-cache bottleneck will prefer core-type W. The
updated bottleneck signature table is presented in Table
VII(b).

Because the N core-type has a smaller window, one
might conclude that this factor should be included in the
signature’s weaknesses term, i.e., … !(Width || Window).
However, if we have a L2 bottleneck, then L2-missed load
instructions will definitely clog the window, causing there to
be a window bottleneck, too. In other words, there is a
window bottleneck whenever there is a L2 bottleneck. This
will cause the naively prescribed signature of the N core-type
((… || L2) && !(… || Window)), to not be set when there is a
L2 bottleneck. Hence, the signature of the N core-type is
changed to (CTRL || L2) && !(Width). Similarly, when there
is a L2 cache bottleneck, there will be I-cache and D-cache
bottlenecks, too. Accordingly, we also exclude I$ and D$ from

the weaknesses term of N’s signature. Please note that this is
the only exception to the algorithm for deriving signatures.

TABLE VII(B): UPDATED BOTTLENECK SIGNATURE TABLE FOR THE

UNCONSTRAINED 4-CORE-TYPE HCMP.

Bottleneck Signature Core type
(Window || I$ || D$) && !(CTRL || L2) L
(Width || I$) && !(CTRL || L2 || D$) W
(CTRL || L2) && !(Width) N

C. Discussions

1) Power-constrained HCMPs
Bottleneck signatures are derived for the power-

constrained HCMPs using the same method. Due to limited
space, we do not walk through the derivation and only show
the end results in Tables VIII and IX.

TABLE VIII: BOTTLENECK SIGNATURE TABLE FOR 4-CORE-TYPE HCMP

UNDER 2.5W POWER BUDGET. (CORE-TYPE A1 DOES NOT HAVE A SIGNATURE.)

Bottleneck Signature Core type
(Window) && !(CTRL || L2 || I$) L1
(Width || I$) && !(CTRL || L2 || D$) W1
(CTRL || L2) && !(Width) N1

TABLE IX: BOTTLENECK SIGNATURE TABLE FOR 3-CORE-TYPE HCMP UNDER

1.5W POWER BUDGET. (CORE-TYPE A2 DOES NOT HAVE A SIGNATURE.)

Bottleneck Signature Core type
(Window || D$) && !(CTRL || L2) L2
(Width || I$) && !(CTRL || L2) W2

2) Multi-programmed Workloads
For a multi-programmed workload, the bottleneck-driven

steering algorithm works similar to a single-threaded
workload. The algorithm determines the best core-type for
each benchmark. In case more than one benchmark selects the
same core-type, we randomly keep one of them in this core-
type and assign other benchmark(s) to unassigned core-types.

3) Arbitrary HCMP Designs

For an arbitrary HCMP design, which does not follow
the average/accelerator core phenomenon, we first find the
best homogeneous core out of the cores in the heterogeneous
design. We treat this core as the default core. Bottleneck
signatures of other cores are obtained by following the
algorithm in Section IVB.

4) Interaction with Operating System

We advocate the following approach for coordinating the
operating system (O/S) and the hardware. First, the O/S is
responsible for macro-scheduling – using nice levels and other
factors to decide which threads are running versus sleeping in
the next O/S quantum. Second, the O/S creates two logical
partitions of the processor. For one partition, the O/S is
heterogeneity-aware and is in sole control of thread-to-core
mappings. A configuration register disables hardware steering
for this partition. For the other partition, the O/S is agnostic of
thread-to-core mappings, permitting single-thread acceleration
via bottleneck-driven steering. When the current O/S quantum
expires, the O/S needs to swap-out selected threads based on

macro-scheduling. Since threads in the second partition freely
migrate possibly many times during the quantum, a status
register is consulted by the O/S scheduler to locate threads to
be swapped out and only their cores are interrupted.

The O/S is free to configure the two partitions as it
desires, from no control at one extreme to full control at the
other. The first partition (software control) allows not only
O/S-driven optimization, but also privileged users can request
particular core-types to run on.

V. EXPERIMENTAL METHODOLOGY

A. Benchmarks

We used the SPEC 2000 benchmark suite with the given
reference inputs. (FabScalar uses the PISA ISA [1] which
constrains us to an older version of gcc, hence, many SPEC
2006 benchmarks could not be compiled.) We simulate the
first four billion instructions of each benchmark. Please note
that it is important to simulate for a longer time to capture the
different phases of the program and to see the effects of thread
migration.

B. Metrics

The performance metric is billions-of-instructions-per-
second (BIPS). To quantify the combined performance and
power efficiency of our steering algorithm, we use BIPS3/watt.
BIPS3/watt is a voltage-independent metric, hence, BIPS3/watt
is preferred over energy-delay-product [23]. Please note that
watt here refers to average power and not peak power. (Peak
power was only used in the selection of core-types at design-
time, and only for the power-constrained HCMPs.)

C. Evaluation Methodology

The default thread migration overhead, for copying
registers from old core to new core, is 100 cycles. We also
show results for overheads of 1K and 10K cycles, and the
differences are negligible because bottleneck-steering avoids
unnecessary migrations. We chose 100 cycles as the default in
order to maximize performance of the state-of-art sampling
algorithm to which we compare. It is more sensitive to the
overhead because it does trials on all the core-types during its
sampling phase, causing more frequent migrations. Thread
migration incurs extra L1 cache misses and these are
accounted for in the results.

All graphs in the result section are normalized with
respect to running solely on the average core-type of the
particular HCMP (A, A1, or A2, depending on which HCMP),
i.e., the best homogeneous design.

We compare bottleneck-driven steering with the
following steering algorithms: sampling algorithm, optimal
steering algorithm and oracle steering algorithm. Note that the
optimal and oracle steering algorithms cannot be implemented
practically and are presented as upper bounds. However, we
do include the thread migration overhead in all the algorithms.
These algorithms are explained in detail below.
Sampling algorithm: To model the sampling algorithm
[3][19], we introduce two parameters: switching interval and
sampling interval. After every switching interval, the

application is run on each core-type for the given sampling
interval. After sampling, the application is run on the best
core-type found during sampling, for the rest of the switching
interval. We evaluated different switching and sampling
intervals and found that a switching interval of 1M
instructions and a sampling interval of 10K instructions works
best.
Optimal steering algorithm: The best core for the current
10K segment is the core used for running the next 10K
segment of the application.
Oracle steering algorithm: For every 10K segment, the best
core is used for running the application.

VI. RESULTS

A. Comparison of Different Steering Algorithms

In the unconstrained 4-core-type HCMP, the bottleneck-
driven steering algorithm performs 12% better than the
average core-type for the SPEC benchmark suite (Figure 1).
We further see that the performance of the oracle steering
algorithm and the optimal steering algorithm are 15% and
13% better than the average core-type, respectively. This
shows that the bottleneck-driven steering algorithm captures
most of the performance improvement available.

To make sure that our thresholds and bottleneck
signatures are applicable in general, we also tested our
algorithm with SPEC on a different input set (test) and
MiBench. In both SPEC (test) and MiBench, we found that
bottleneck steering is able to tap 99% of the performance
yielded by optimal steering.

For a deeper understanding, we find the misprediction
rate and switching rate of the sampling algorithm and the
bottleneck steering algorithm. The misprediction rate is
defined as the ratio between the number of 10K segments in
which the best core is not predicted correctly and the total
number of 10K segments. Similarly, the switching rate is
defined as the ratio between the number of times the program
switches cores and the total number of 10K segments. The
extent to which a given misprediction impacts performance
depends on how suboptimal the predicted core-type is for the
10K segment, whether or not it underperforms the average
core-type (potential slow-down), and whether or not a core
switch was undertaken (overhead). A core switch always
incurs a time penalty.

In Figure 2, we see that the switching rate for the
bottleneck steering algorithm (switch_bot) is less than or
comparable to the sampling algorithm (switch_samp).
Similarly, for all benchmarks except gcc, ammp and equake,
the misprediction rate for bottleneck steering (misp_bot) is
less than or comparable to sampling (misp_samp). Hence, for
most benchmarks, the bottleneck steering algorithm performs
better than or comparable to the sampling algorithm. For gcc
and ammp, because of higher misprediction rates, bottleneck
steering performs worse than sampling. For equake, even
though bottleneck steering has a higher misprediction rate,
bottleneck steering performs slightly better than sampling
because of a lower switching rate and potentially mild
suboptimality of the mispredicted core-type.

Figure 3 shows the occupancy of different core-types in
the unconstrained 4-core-type HCMP assuming oracle
steering. It is interesting to see that there are significant
differences in the occupancies of different core-types, across
benchmarks.

Figure 3: Number of instructions spent in each core-type in the unconstrained

4-core-type HCMP.

B. Robustness Analysis

1) Efficiency Metric
For the robustness analysis, we first study the change in

metric from performance (BIPS) to efficiency (BIPS3/watt).
To evaluate the efficiency of our steering algorithm, we
compare BIPS3/watt for our steering algorithm with that of the
average core-type. In Figure 4, we see that our steering
algorithm outperforms the average core-type by 33% in terms
of efficiency. In contrast, the sampling algorithm only
performs 25% better than the average core-type.

Figure 4: Average normalized efficiency (BIPS3/watt) of different steering

algorithms.

2) Changing Thread Migration Overhead
Figure 5 shows sensitivity to the thread migration

overhead. With a thread migration overhead of 1,000 cycles,
the average performance gain is 11%. If we further increase
the thread migration overhead to 10,000 cycles, the average
performance gain reduces to 10%. This shows that even with
one or two orders of magnitude increase in thread migration
overhead, the performance does not reduce drastically.

Figure 5: Impact of thread migration overhead.

Figure 1: Performance of bottleneck-driven and other steering algorithms for 4-core-type HCMP.

Figure 2: Comparison of switching rate and misprediction rate of sampling algorithm with that of bottleneck-driven steering algorithm.

C. Power-constrained HCMPs

The 2.5W and 1.5W HCMP results are shown in Figure
6. (Please see Section IIIC for constrained HCMP design
configurations.) At the 2.5W power budget, the bottleneck-
driven steering algorithm in the 4-core-type HCMP performs
8% better than the average core-type (at 2.5W power budget),
as opposed to the 11.5% performance gain achieved by oracle
steering. Note that the performance value obtained at 2.5 W is
normalized to the best homogeneous core-type at 2.5W. At the
1.5W power budget, the bottleneck-driven steering algorithm
in the 3-core-type HCMP performs 11% better than the
average core-type (at 1.5W power budget), as opposed to the
15% performance gain achieved by oracle steering.

Figure 6: Performance of bottleneck-driven and other steering algorithms for

HCMPs at different power budgets.

D. Multi-programmed Workloads

For creating multi-programmed workloads from SPEC
benchmarks, we make use of the clusters obtained by
subsetting of SPEC benchmarks by Phansalkar et al. [30]. We
create four classes of 4-benchmark workloads for the 4-core-
type HCMP by selecting benchmarks from various clusters. In
the first class, we select four benchmarks all from different
clusters. In the second, third and fourth classes, we get
benchmarks from three clusters, two clusters and one cluster,
respectively. Figure 7 shows the performance results for the 4-
core-type HCMP for multi-programmed workloads. Label N
(A, B, C, D) denotes a workload created from N clusters,
specifically, the Ath, Bth, Cth and Dth cluster in Table 2 in [30].

In Figure 7, for oracle steering, for every 10K instruction
interval of the multi-programmed workload, we choose the
best application-to-core mapping out of 4! (4 factorial)
possible mappings. Sampling algorithm is not shown because
of massive overhead for multi-programmed workload. We see
that average normalized performance of bottleneck-driven
steering algorithm of 4-core-type HCMP is 9% better than the
4-core-type homogeneous CMP. In contrast, the oracle
steering algorithm performs 18% better than the 4-core-type
homogeneous CMP. This shows that there is room for
improvement in the bottleneck-driven steering algorithm for
multi-programmed workloads by using a more sophisticated
conflict resolving mechanism (instead of just random), such as
ranking the severity of bottlenecks. We leave this for future
work.

E. Arbitrary HCMP Design

In Figure 8, we evaluate our bottleneck-driven steering
algorithm on a 3-core-type HCMP which does not follow the
average/accelerator core phenomenon. The 3-core-type HCMP

does not have an average core-type and has core-types N, L
and W. We see that bottleneck-driven steering is able to obtain
most of the performance of optimal steering. Note that this
graph has been normalized to the performance of oracle
steering.

Figure 7: Performace of bottleneck-driven steering algorithm for 4-core-type

HCMP for multi-programmed workloads.

Figure 8: Performace of bottleneck-driven steering algorithm for a 3-core-type

HCMP having core-types N, L and W.

VII. RELATED WORK

A. HCMP Design

Early work on HCMPs assumed that the cores consisted
of different generations of the Alpha processor family or
frequency-scaled versions of x86 processors [18][19]. Thus,
the constituent cores are monotonic.

Subsequently, Kumar et al. [20] demonstrated significant
performance benefits for multi-programmed workloads when
the HCMP is designed from the ground-up. The resulting
cores are non-monotonic. Their non-monotonic designs differ
from ours – and are contrary to average core / accelerator core
– for at least two reasons. First, they do not consider the effect
of superscalar complexity on core frequency. All cores in their
design space have the same pipeline depth and frequency,
from the smallest/narrowest core to the biggest/widest core.

This is evident in the fact that the best CMP design at their
largest area and power budget is a homogeneous design
comprised of only one core type: the most complex core type
in the design space. In this paper, even when we do not
constrain area or power, the optimal CMP does not contain
our most complex core and it is heterogeneous. The ILP /
frequency trade-off is a sufficient forcing function for both
restraint and core diversity. Second, the focus of their HCMP
design is on maximizing throughput and ours is on minimizing
latency of a single thread (core-selectable processor), although
we did present a global aspect of the steering algorithm for
multiple contending threads. Together, these two differences
explain why Kumar et al. did not observe the average core /
accelerator core phenomenon. We believe the two studies are
complementary and provide unique perspectives for the
architecture community. Finally, our work includes a steering
algorithm whereas Kumar et al. used oracle steering.

Azizi et al. [2] studied the energy-performance tradeoffs
in processor architecture and performed a marginal-cost
analysis. We find the optimal HCMP designs for maximizing
single-thread performance for both unconstrained and
constrained power budgets. Further, our analysis is based on a
detailed high-fidelity RTL model [6].

Choudhary et al. [6] studied a workload-agnostic palette
of 21 core types. Lee et al. [21] found the optimal HCMP for
efficiency (BIPS3/watt) using K-means clustering. Neither
work uncovers the average/accelerator core insight or
leverages the unified view of core selection and application
steering.

Dynamic voltage and frequency scaling (DVFS) is
orthogonal to heterogeneity. Further, Grochowsky et al. [13]
found HCMP provided more benefit compared to DVFS. In
addition, recent research has shown that DVFS is showing
diminishing returns on newer platforms [34]. Non-monotonic
HCMP provides a compelling alternative.

B. Application Steering in HCMP

Current techniques for steering fall into the following
categories: sampling-based approaches, heuristics-based
approaches, static approaches and model-based approaches.

1) Sampling-based Approaches
Sampling-based approaches run the application on every

core type after a switching interval to determine the best core
type for the application for the next interval.

Kumar et al. [19] proposed the sampling algorithm for
steering in a monotonic HCMP. Becchi et al. [3] proposed a
steering algorithm, which relied on the speedup factor
(performance improvement on a fast core relative to a slow
core) for a monotonic HCMP. The speedup factor was
computed by running a thread on each core separately. Winter
et al. [41] explored thread scheduling and global power
management techniques in HCMP. They compared different
algorithms like brute force, greedy and local search for thread
scheduling. All examined schemes required sampling to
determine the best thread-to-core assignment. Sawalha et al.
[33] proposed recording IPCs of the different program phases
in a table and using it for scheduling when the phase recurs.
However, it still required sampling the performance of the

threads on each core type. Sondag et al. [37] also records past
phase behavior, but uses a static analysis tool to mark phases
in the binary a priori and also insert performance
measurement code for each phase.

Each of the above sampling techniques suffers from the
overhead of successively migrating the application on all the
core types after every switching interval. Further, this
overhead would increase with the number of core types [8]. In
our technique, the application directly migrates from the
current core type to the best core type without any need for
sampling.

2) Heuristics-based Approaches
Saez et al. [32] proposed a dynamic algorithm for

steering program phases among homogeneous cores running
at two different frequencies (emulating the big core/little core
class of monotonic HCMP). They measured the L2 miss rate
to find the optimal core mapping. Koufaty et al. [17] used
proprietary tools to emulate an asymmetric system where the
cores differed in the number of micro-ops that could be retired
per cycle. They assumed cores of two types: a big core
capable of retiring four micro-ops per cycle and a small core
capable of retiring a single micro-op per cycle. Still, these
cores are monotonic in nature and do not exploit the full
performance advantage of HCMP design. They correlated the
application behavior with off-chip and on-chip stalls. They
scheduled the applications suffering from memory stalls and
other resource stalls on the smaller core and the rest on the
bigger core. Patsilaras et al. [29] dynamically scheduled
threads based on the amount of MLP which is estimated by
the number of L2 misses.

It has been shown that the above approaches may cause
suboptimal scheduling as memory intensity alone is not
enough for determining the optimal workload-to-core mapping
[8]. Further, these techniques were conceived and evaluated
for the big core/little core class of monotonic HCMPs, and it is
not clear how they can be extended to non-monotonic
HCMPs.

Rodrigues et al. [31] proposed a tiled architecture
wherein each tile has two core types, one with strong integer
resources and weak floating-point resources and vice versa for
the other. Hence, the cores are non-monotonic, but in a less
subtle way than our HCMP: thread swapping is based on
percentages of integer and floating-point instructions.

3) Static Approaches
Static approaches use offline techniques to determine the

optimal core mapping for the code fragment.
Chen and John [5] proposed a scheduling algorithm that

matches programs and cores. Programs and cores are
projected onto a common multi-dimensional space: programs,
based on their resource demands, and cores, based on their
configurations. The scheduler then assigns programs to cores
based on Euclidean distances between them. The approach
exploits only inter-program diversity and does not adapt to
phase changes within programs. Shelepov et al. [35] proposed
a static algorithm for steering program phases among
frequency-scaled versions of the same processor. They
embedded reuse distance profile signatures into the binary,

which enable the core to quickly estimate the L2 cache miss
rate. Using the L2 cache miss rate, they were able to find the
optimal core mapping.

These static approaches require that workloads be
profiled beforehand. Further, the workload behavior may be
drastically impacted by the input data [8]. On the other hand,
our technique is a dynamic technique.

4) Model-based Approaches
Model-based approaches use a dynamic model to

determine the best core for the application.
Craeynest et al. [8] collected MLP and ILP information

to predict the performance on the other core in a big core/little
core style monotonic HCMP. Dubach et al. [9] used machine
learning to dynamically predict the best hardware
configuration for a program phase in a reconfigurable
processor. Lukefahr et al. [22] designed a predictive-based
feedback controller for switching in a closely-coupled big
core/little core monotonic HCMP.

It is unclear how these techniques can be adapted to a
non-monotonic HCMP. Our technique uses a bottleneck
model to predict the optimal workload-to-core mapping in a
non-monotonic HCMP.

VIII. SUMMARY AND FUTURE WORK

HCMPs are an attractive substrate for improving single-
thread performance and energy efficiency. More powerful
classes of HCMPs employ non-monotonic core types where
each core type is performance-optimized to different
instruction-level behavior and hence cannot be ranked –
different applications achieve their highest performance on
different cores. Although non-monotonic heterogeneous
designs offer higher performance potential than either
monotonic heterogeneous designs or homogeneous designs,
steering applications to the best-performing core is
challenging due to performance ambiguity of core types.

In this paper, we present a unified view of selecting non-
monotonic core types at design-time and steering programs to
cores at run-time. After comprehensive evaluation, we found
that with N core types, the optimal HCMP for single-thread
performance is comprised of an “average” core-type coupled
with N-1 “accelerator” core-types that relieve distinct resource
bottlenecks in the average core-type. This inspires a
complementary steering algorithm in which the application is
continuously monitored for bottlenecks. The application is
migrated to a core-type that relieves the bottlenecks.

HCMPs open up a whole new direction of
microarchitecture research. Many microarchitectural
optimizations, which have been proposed before, have never
been put into practice. One possible reason is that they do not
provide universal benefit and may actually degrade
performance in some circumstances. As each core-type targets
a narrow workload space, HCMP provides a great platform to
reconsider these optimizations. Techniques that harness far-
flung ILP, like run-ahead execution [24], continual flow
pipelines, checkpoint processing and recovery [38], etc., are
worth exploring for the large (L) core-type in our 4-core-type
HCMP. Similarly, optimizations that help in finding nearby

ILP, like trace cache, clustered architecture, value prediction,
etc. [16], are worth exploring for the wide (W) core-type.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable
feedback. This research was supported by NSF grants CCF-
0811707 and CCF-1018517, and gifts from Intel and IBM.
Any opinions, findings, and conclusions or recommendations
expressed herein are those of the authors and do not
necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] T. Austin, E. Larson and D. Ernst. SimpleScalar: An Infrastructure for
Computer System Modeling, IEEE Micro, Feb. 2002.

[2] O. Azizi, A. Mahesri, B. Lee, S. Patel and M. Horowitz. Energy-
performance Tradeoffs in Processor Architecture and Circuit Design: a
Marginal Cost Analysis, Int’l Symposium on Computer Architecture,
2010.

[3] M. Becchi and P. Crowley. Dynamic Thread Assignment on
Heterogeneous Multiprocessor Architectures, Int’l Conference on
Computing Frontiers, 2006.

[4] D. Brooks, V. Tiwari and M. Martonosi. Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations, Int’l
Symposium on Computer Architecture, 2000.

[5] J. Chen and L. John. Efficient Program Scheduling for Heterogeneous
Multi-core Processors, Design Automation Conference, 2009.

[6] N. Choudhary, S. Wadhavkar, T. Shah, H. Mayukh, J. Gandhi, B.
Dwiel, S. Navada, H. Najaf-abadi and E. Rotenberg. FabScalar:
Composing Synthesizable RTL Designs of Arbitrary Cores within a
Canonical Superscalar Template, Int’l Symposium on Computer
Architecture, 2011.

[7] N. Choudhary. FabScalar: Automating the Design of Superscalar
Processors, Ph.D. Thesis, Department of Electrical and Computer
Engineering, North Carolina State University, May 2012.

[8] K. Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez and J.
Emer. Scheduling Heterogeneous Multi-Cores through Performance
Impact Estimation (PIE), Int’l Symposium on Computer Architecture,
2012.

[9] C. Dubach, T. Jones, E. Bonilla and M. Boyle. A Predictive Model for
Dynamic Microarchitectural Adaptivity Control, Int’l Symposium on
Microarchitecture, 2010.

[10] H. Esmaeilzadeh, E. Blem, R. Amant, K. Sankaralingam and D.
Burger. Dark Silicon and the End of Multicore Scaling, Int’l
Symposium on Computer Architecture, 2011.

[11] D. Goldberg. Genetic Algorithms in Search, Optimization, and
Machine Learning, Reading, Mass [u.a.]: Addison-Wesley.

[12] N. Goulding, J. Sampson, G. Venkatesh, S. Garcia, V. Bryskin, J.
Martinez, S. Swanson and M. Taylor. GreenDroid: A Mobile
Application Processor for a Future of Dark Silicon, HotChips, 2010.

[13] E. Grochowski, R. Ronen, J. Shen and H. Wang. Best of Both Latency
and Throughput, Int’l Conference on Computer Design, 2004.

[14] P. Greenhalgh. Big.LITTLE processing, white paper, ARM, 2011.
[15] M. Hill and M. Marty. Amdahl’s law in the multicore era, In IEEE

Computer, 41(7), 2008.
[16] D. Kaeli and P. Yew. Speculative Execution in High Performance

Computer Architectures, Eds. CRC Press, 2005.
[17] D. Koufaty, D. Reddy and S. Hahn. Bias Scheduling in Heterogeneous

Multicore Architectures, EuroSys, 2010.
[18] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan and D. Tullsen.

Single-ISA Heterogeneous Multi-Core Architectures: The Potential for
Processor Power Reduction, Int’l Symposium on Microarchitecture,
2003.

[19] R. Kumar, D. Tullsen, P. Ranganathan N. Jouppi and K. Farkas.
Single-ISA Heterogeneous Multi-core Architectures for Multithreaded
Workload Performance, Int’l Symposium on Computer Architecture,
2004.

[20] R. Kumar, D. Tullsen and N. Jouppi. Core Architecture Optimization
for Heterogeneous Chip Multiprocessors, Int’l Conference on Parallel
Architecture and Compilation Techniques, 2006.

[21] B. Lee and D. Brooks. Illustrative Design Space Studies with
Microarchitectural Regression Models, Int’l Symposium on High
Performance Computer Architecture, 2007.

[22] A. Lukefahr, S. Padmanabha, R. Das, F. Sleiman, R. Dreslinski, T.
Wenisch and S. Mahlke. Composite Cores: Pushing Heterogeneity into
a Core, Int’l Symposium on Microarchitecture, 2012.

[23] A. Martin and M. Nystroem. ET2: A Metric for Time and Energy
Efficiency of Computation, Power-Aware Computing, 2001.

[24] O. Mutlu, J. Stark, C. Wilkerson and Y. Patt. Runahead Execution: An
Alternative to Very Large Instruction Windows for Out-of-order
Processors, Int’l Symposium on High-Performance Computer
Architecture, 2003.

[25] S. Navada, N. Choudhary and E. Rotenberg. Criticality-driven
Superscalar Design Space Exploration, Int’l Conference on Parallel
Architecture and Compilation Techniques, 2010.

[26] H. Najaf-abadi, N. Choudhary and E. Rotenberg. Core-Selectability in
Chip Multiprocessors, Int’l Conference on Parallel Architecture and
Compilation Techniques, 2009.

[27] H. Najaf-abadi and E. Rotenberg. Architectural Contesting, Int’l
Symposium on High Performance Computer Architecture, 2009.

[28] H. Najaf-abadi and E. Rotenberg. Configurational Workload
Characterization, Int’l Symposium on Performance Analysis of Systems
and Software, 2008.

[29] G. Patsilaras, N. Choudhary and J. Tuck. Efficiently Exploiting
Memory Level Parallelism on Asymmetric Multicore Processors in the
Dark Silicon Era, ACM Transactions on Architecture and Code
Optimization, 2012.

[30] A. Phansalkar, A. Joshi, L. Eeckhout and L. John. Measuring Program
Similarity: Experiments with SPEC CPU Benchmark Suites, Int’l
Symposium on Performance Analysis of Systems and Software, 2005.

[31] R. Rodrigues, A. Annamalai, I. Koren, S. Kundu and O. Khan.
Performance per Watt Benefits of Dynamic Core Morphing in
Asymmetric Multicores, Int’l Conference on Parallel Architecture and
Compilation Techniques, 2011.

[32] J. Saez, M. Prieto, A. Fedorova and S. Blagodurov. A Comprehensive
Scheduler for Asymmetric Multicore Processors, EuroSys, 2010.

[33] L. Sawalha, S. Wolff, M. Tull and R. Barnes. Phase-guided Scheduling
on Single-ISA Heterogeneous Multicore Processors, Euromicro
Conference on Digital System Design, 2011.

[34] E. Le Sueur and G. Heiser. Dynamic Voltage and Frequency Scaling:
The Laws of Diminishing Returns, Workshop on Power Aware
Computing and Systems, 2010.

[35] D. Shelepov, J. Saez, S. Jeffery, A. Fedorova, N. Perez, Z. Huang, S.
Blagodurov and V. Kumar. HASS: a Scheduler for Heterogeneous
Multicore Systems, ACM Operating System Review 43, 2 (2009), 66-
75.

[36] T. Sherwood, E. Perelman, G. Hamerly and B. Calder. Automatically
Characterizing Large Scale Program Behavior, Int’l Conference on
Architectural Support for Programming Languages and Operating
Systems, 2002.

[37] T. Sondag and H. Rajan. Phase-based Tuning for Better Utilization of
Performance-Asymmetric Multicore Processors, Int’l Symposium on
Code Generation and Optimization, 2011.

[38] S. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton,
Continual Flow Pipelines, Int’l Conference on Architectural Support
for Programming Languages and Operating Systems, 2004.

[39] M. Suleman, O. Mutlu, M. Qureshi and Y. Patt. Accelerating Critical
Section Execution with Asymmetric Multi-Core Architectures, Int’l
Conference on Architectural Support for Programming Languages and
Operating Systems, 2009.

[40] S. Wilton and N. Jouppi. CACTI: An Enhanced Cache Access and
Cycle Time Model, IEEE Journal of Solid State Circuits, 1996.

[41] J. Winter, D. Albonesi and C. Shoemaker. Scalable Thread Scheduling
and Global Power Management for Heterogeneous Many-Core
Architectures, Int’l Conference on Parallel Architecture and
Compilation Techniques, 2010.

