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Abstract—A single-ISA heterogeneous chip multiprocessor 
(HCMP) is an attractive substrate to improve single-thread 
performance and energy efficiency in the dark silicon era. We 
consider HCMPs comprised of non-monotonic core types where 
each core type is performance-optimized to different instruction-
level behavior and hence cannot be ranked – different program 
phases achieve their highest performance on different cores. 
Although non-monotonic heterogeneous designs offer higher 
performance potential than either monotonic heterogeneous 
designs or homogeneous designs, steering applications to the 
best-performing core is challenging due to performance 
ambiguity of core types. 

In this paper, we present a unified view of selecting non-
monotonic core types at design-time and steering program phases 
to cores at run-time. After comprehensive evaluation, we found 
that with N core types, the optimal HCMP for single-thread 
performance is comprised of an “average core” type coupled 
with N-1 “accelerator core” types that relieve distinct resource 
bottlenecks in the average core. This inspires a complementary 
steering algorithm in which a running program is continuously 
diagnosed for bottlenecks on the current core. If any are 
observed, the program is migrated to an accelerator core that 
relieves any of the bottlenecks and does not worsen any of them. 
If no accelerator core satisfies this condition, then the average 
core is selected. 

In our evaluation, we show that a 4-core-type HCMP 
improves single-thread performance up to 76% and 15% on 
average over a homogeneous chip multiprocessor, and our 
steering algorithm is able to capture most of this performance 
gain. Further, we show that our steering algorithm on a 4-core-
type HCMP is, on average, 33% more power-efficient 
(BIPS3/watt) than a homogeneous chip multiprocessor. 

Keywords - heterogeneous multi-core processor, adaptive 
processor, superscalar, core customization, thread migration, 
instruction-level parallelism, single-thread performance1  

                                                           
*Sandeep Navada, Niket K. Choudhary and Salil V. Wadhavkar contributed to 
this paper when they were graduate students in the Department of Electrical 
and Computer Engineering at North Carolina State University. 

I. INTRODUCTION 

Industry has fully embraced multi-core chip design for 
platforms ranging from mobile phones to desktops to 
supercomputers. However, as we enter the “dark silicon” era 
[10][12], the number of cores that can be active is limited by 
the chip’s power budget and is less than the number of cores 
that can be fit on the chip. Specialization is one way to profit 
from dark silicon. While adding more of the same core design 
is of little use in this context, introducing differently-designed 
cores enables run-time adaptation: migrating a thread among a 
dedicated ensemble of different core types as the thread’s 
instruction-level behavior changes. Matching varying 
instruction-level behavior to cores optimized for different 
behaviors, can lead to faster and more energy-efficient 
execution. A multi-core architecture with multiple core types, 
which are functionally-equivalent but microarchitecturally-
diverse, is called a single-ISA heterogeneous chip 
multiprocessor (HCMP). 

Early HCMP designs were limited to monotonic core 
types: they could be clearly ranked from high-
performance/high-power to low-performance/low-power 
independent of the application, providing an unambiguous 
performance and power spectrum [18][19][39]. A more 
powerful class of HCMP employs non-monotonic core types 
[20]: each core type is performance-optimized to different 
instruction-level behavior and hence cannot be ranked – 
different applications achieve their highest performance on 
different cores [6][27][28]. Although non-monotonic 
heterogeneous designs offer higher performance potential than 
either monotonic heterogeneous designs or homogeneous 
designs, steering applications to the best-performing core is 
challenging due to performance ambiguity of core types. 
Moreover, with non-monotonic cores, accurate steering is 
mandatory. Without it, performance can actually worsen since 
cores are tuned. Steering completes what was started by 
architecting non-monotonic cores in the first place. 

In this paper, we demonstrate that selecting non-
monotonic core types at design-time and steering programs to 
cores at run-time, are actually “two sides of the same coin”. 



We performed an exhaustive RTL-based [6] design space 
exploration of HCMPs with one through four superscalar core 
types that achieve the highest performance on 39 phases from 
SPEC. The addition of more core types yields more 
performance due to tailoring cores to diverse instruction-level 
behaviors (control-flow, data-flow, cache misses, etc.). With 
only one core type, the best core in the design space is a rather 
“average” core that strikes a reasonable balance between 
instruction-level parallelism (ILP) and frequency. If more core 
types are allowed, it turns out that the average core (i.e., best 
homogeneous core) is still selected and additional core types 
are selected that relieve distinct resource bottlenecks in the 
average core, that constrain the performance of “outlier” 
program phases: a core type with larger window size (window 
bottleneck); one with higher issue width (width bottleneck); 
one with higher frequency (frequency bottleneck); and so 
forth. In summary, with N core types, the optimal HCMP for 
single-thread performance is comprised of an “average core” 
type coupled with N-1 “accelerator core” types that relieve 
distinct resource bottlenecks in the average core. 

The fact that the selection of non-monotonic cores is 
empirically driven by average resource provisioning (average 
core) coupled with distinct resource bottleneck relief 
(accelerator cores), inspires a complementary steering 
algorithm. The running program is continuously diagnosed for 
bottlenecks on the current core. If any are observed, the 
program is migrated to an accelerator core that relieves any of 
the bottlenecks and does not worsen any of them. If no 
accelerator core satisfies this condition, then the average core 
is selected. 

The average core / accelerator core phenomenon is 
arguably a result of our objective function: maximize the 
performance of one thread by providing it a private ensemble 
of diverse cores, essentially a single adaptive processor or 
core-selectable processor [26] whereby adaptivity is achieved 
by thread migration. We also take the paper in several other 
directions. 
 Power-constrained HCMP: We constrain the core-

selectable processor to a power budget. While the 
constituent cores change for different budgets, we 
empirically observe that the best homogeneous core type 
for this power budget always shows up as the average 
core type and the other core types relieve distinct 
bottlenecks in it. Thus, our steering approach is robust 
from less-constrained to more-constrained designs. 

 Multi-programmed workload: Our steering algorithm is 
adapted to support multiple threads within the core-
selectable processor. Threads decide locally on their 
preferred core and contention is resolved globally by 
conflict resolving mechanisms like ranking threads’ 
bottleneck intensities, etc. 

 Arbitrary HCMP design: We show how to apply 
bottleneck-driven steering to arbitrary HCMP designs, 
regardless of which criteria are used to guide the selection 
of cores at design-time. The idea is that one of the core 
types is the best on average among all core types 
available (even if it is not the best homogeneous core 

type), and bottleneck relief (i.e., strengths) of other core 
types can always be gauged relative to it. 
In our evaluation, we show that the best 4-core-type 

HCMP improves single-thread performance up to 76% and 
15% on average over the best homogeneous chip 
multiprocessor, and our steering algorithm is able to capture 
most of this performance gain. We also show that our steering 
algorithm on the 4-core-type HCMP is, on average, 33% more 
power-efficient (BIPS3/watt) than the homogeneous chip 
multiprocessor. 

The significance and contribution of our work can be 
summarized as follows: 
1) First complete proposal to accelerate a single thread 

using a core-selectable processor:  This paper, and its 
precursors [6][26][27], comprise the only work focused 
on architecting and operating multiple diverse cores as 
one logical core to minimize latency of a single thread. 
Most of the related work in this area pair one big OOO 
core type with one little in-order core type (what ARM 
calls big.LITTLE [14]), or other similar fast/slow hybrid, 
where the objective is to either minimize energy 
consumption of a single thread while minimizing latency 
impact [18][22] or maximize throughput/watt/area of 
multiprogrammed, multi-threaded workloads 
[3][8][17][19][32][35][37]. Our work is unique in 
minimizing latency under low contention; in turn, this 
requires co-designing the ensemble of non-monotonic 
core types and the steering algorithm, rather than 
assuming a de facto monotonic HCMP. What little prior 
work there is on design exploration of core types, is also 
focused on throughput/watt/area of multiprogrammed 
workloads, does not factor-in frequency, and does not 
provide a companion steering algorithm [20]. 

2) Average core / accelerator core phenomenon: We are the 
first to empirically discover the average core/accelerator 
cores phenomenon of HCMPs architected for single-
thread performance. This discovery was critical to coming 
upon the idea of using very simple distinctive bottleneck 
analysis for steering. 

3) Bottleneck-based steering approach: We propose a 
simple and intuitive, bottleneck-based steering algorithm 
for HCMPs. It captures most of the performance gain in 
an HCMP and outperforms the current state-of-art 
steering algorithm (sampling algorithm). 

4) Sensitivity studies: (i) We show that the average core / 
accelerator core phenomenon still holds for power-
constrained core-selectable processors. (ii) We show how 
to adapt the steering algorithm for multiple threads 
sharing the core-selectable processor. (iii) We show that 
bottleneck-based steering can be applied to arbitrary 
HCMP designs because the designer can always identify a 
best-on-average core type and gauge other core types 
against it. 

The rest of the paper is organized as follows. Background 
on processor cores is presented in Section II. Section III 
explains our process of architecting the non-monotonic 



HCMP. Section IV details our technique of using bottleneck 
information to steer applications in a non-monotonic HCMP. 
Experimental methodology and results are presented in 
Sections V and VI, respectively. Section VII discusses related 
work. Finally, Section VIII concludes the paper. 

II. BACKGROUND ON PROCESSOR CORES 

A single-ISA heterogeneous chip multiprocessor 
(HCMP) consists of multiple differently-designed core types. 
A core type can be varied along three dimensions: structure 
sizes (issue queue, load and store queues, physical register file 
/ reorder buffer, caches, and predictors), pipeline stage widths 
and clock period. 

In a core, there is a tradeoff between exploiting more 
instruction-level parallelism (ILP) and achieving a higher 
clock frequency, and this tradeoff works out differently for 
different program phases. Exploiting more ILP requires 
increasing the sizes of ILP-extracting structures and/or 
increasing the widths of pipeline stages. The additional circuit 
complexity may increase cycle time, however. Different 
program phases have different amounts and distributions of 
ILP (as well as memory-level parallelism), causing them to be 
characterized by different optimal core types. 

III. CORE SELECTION IN HCMP 

Selecting the core-types, which make up a good HCMP 
design, is not straightforward because each application phase 
prefers a different core-type. As we can only have a limited 
number of core-types in a given HCMP, this results in a 
compromise. To choose the core-types, which make up the 
optimal HCMP design, we perform a rigorous design space 
exploration using genetic algorithms [11] for the SPEC 
benchmark suite. 

Section IIIA discusses our methodology for architecting 
an N-core-type HCMP. Section IIIB describes the optimal 
unconstrained HCMP design with 2, 3 and 4 core-types. 
Section IIIC discusses the optimal power-constrained HCMP 
design. 

A. Methodology 

1) Basis of Core Design Space: FabScalar Toolset 
The core design space is created using FabScalar’s 

Canonical Superscalar Template and Canonical Pipeline Stage 
Library (CPSL) [6]. The template has the following canonical 
pipeline stages: Fetch, Decode, Rename, Dispatch, Issue, 
Register Read, Execute, Writeback, and Retire. The CPSL 
provides different register-transfer-level (RTL) designs for 
each canonical pipeline stage, that differ in their superscalar 
width and depth of sub-pipelining (pipelining within a 
canonical stage). Sizes of microarchitectural structures are 
parameterized. 

Instructions-per-cycle (IPC), clock period, and power, 
are measured as follows. 

IPC is obtained using FabScalar’s cycle-accurate C++ 
simulator, which has been validated against FabScalar’s RTL 
designs [6]. 

To get a reliable estimate of the clock period, we make 
use of FabScalar’s Performance-Power-Area (PPA) tool [7]. 

PPA provides propagation delays for each and every pipeline 
stage design in the entire CPSL, and these delays are from 
logic synthesis (for logic) and FabMem (for highly-ported 
RAMs/CAMs). (For caches, PPA uses CACTI [40], with its 
device and wire parameters adjusted to match those of the 
standard cell library used for synthesis [6].) The CPSL allows 
composing thousands of cores and their cycle times are known 
from the detailed, comprehensive CPSL characterization just 
described. 

For power modeling, we again use FabScalar’s cycle-
accurate C++ simulator, which, like the Wattch method [4], 
combines per-unit energy numbers with their activity counts. 
Unlike Wattch, the per-unit dynamic/static energy numbers 
come from the FabScalar PPA tool, which provides per-unit 
energy numbers from logic synthesis and FabMem, for 
hundreds of fine-grain components in the core. Moreover, per-
unit energies for all superscalar widths, depths, and structure 
sizes are fully represented within PPA. 

2) Core Design Space 
The core design space is spanned by the independent 

design parameters enumerated in Table I. The core design 
space consists of design points created by varying the clock 
period and the complexity (structure sizes and superscalar 
widths) of different pipeline stages.  

Depths of pipeline stages are dependent design 
parameters. For a given design point, the depth of a pipeline 
stage is the degree of sub-pipelining required so that its 
complexity can fit in the clock period. 

TABLE I:  MICROARCHITECTURAL DESIGN PARAMETERS. 

The cartesian product of all parameter values in Table I, 
gives 3.3 million design points. Not all of these design points 
are valid, however. Firstly, as we are using FabScalar’s CPSL, 
a pipeline stage cannot be made arbitrarily deep. Thus, some 
design points cannot meet their clock periods. Secondly, for a 
given pipeline stage, only those design points are considered 
that have the largest structure(s) for a given width, depth, and 
frequency of that pipeline stage. By performing this design 
space pruning, we are able to restrict it to 13,966 design 
points. 

We assume private L1 instruction and data caches, and a 
shared L2 cache. Block size is 64 bytes, L1 associativity is 4, 
and L2 associativity is 8. The memory access latency is fixed 
at 100 ns. We use a gshare branch predictor with 64K entries, 
a branch target buffer with 4K entries and a return address 
stack with 16 entries. 

 

Parameter Value Range Number

Front end width 2, 3, 4, 5, 6, 7, 8 7 
Issue width 2, 3, 4, 5, 6, 7, 8 7 
Phys. Reg. File size 64, 128, 192, 256, 384, 512 6 
Issue Queue size 16, 24, 32, 48, 64, 96, 128 7 
Load Queue size/ 
Store Queue size 

8/8, 16/16, 24/24, 32/32, 
40/40, 48/48, 56/56, 64/64 

8 

L1 Instr. Cache size (KB) 8, 16, 32, 64, 128 5 
L1 Data Cache size (KB) 8, 16, 32, 64, 128 5 
L2 Cache size 2MB 1 
Clock Period 0.5→1.2 ns  (delta=0.1ns) 8 



3) Core Selection Algorithm 
An HCMP consists of N core-types selected from the 

core design space. Hence, the HCMP design space consists of 
every combination of N core-types selected from the core 
design space. Clearly, finding the optimal HCMP design is a 
big search endeavor. To give an idea of the size of the HCMP 
design space, let us consider the 4-core-type HCMP. The 
design space of the 4-core-type HCMP has every 4-core 
combination selected from 13,966 design points in the core 
design space. This amounts to 1.59*1015 HCMP design points. 
This is a huge design space and it is impossible to 
exhaustively search it. 

Hence, we use a genetic algorithm [11] to find the best 
N-core-type HCMP design. Please note that every core-type in 
the entire core design space (13,966 design points) is first 
evaluated on 39 SimPoint phases [36] (10 million instructions 
each) obtained from the SPEC benchmark suite. The fully-
characterized core design space serves as input to the genetic 
algorithm for finding the best N-core-type HCMP. For the 
genetic algorithm, an individual is a given N-core-type HCMP 
design selected from the HCMP design space and the 
objective function is the harmonic mean of the performance 
values (billions-of-instructions-per-second (BIPS)) of the 39 
phases, assuming each phase is steered to its best core-type 
out of the N core-types. We use the standard mutation, 
crossover and selection operators in the genetic algorithm. The 
population size is 100 individuals and we keep running until 
the best HCMP design does not change for 10,000 
generations. 

We use this methodology to find the core configurations 
of 2-core-type, 3-core-type and 4-core-type HCMPs. We 
validated the genetic algorithm results with an exhaustive 
search for 1-core-type, 2-core-type and 3-core-type HCMPs 
(as exhaustive search is feasible for them). The next section 
discusses the core configurations. 

B. Unconstrained HCMP Design 

The core-types in the optimal 2-core-type, 3-core-type 
and 4-core-type HCMPs are given in Table II. The 
microarchitecture configurations of these core-types are 
shown in Table III. Note that the performance of the 4-core-
type HCMP is within 98% of the optimal performance bound 
of having customized core-types for each of the SPEC phases 
used – which is why we stopped at 4-core-types. 

TABLE II: CORE-TYPES IN THE OPTIMAL 2-CORE-TYPE, 3-CORE-TYPE AND 4-
CORE-TYPE HCMPS. ALSO SHOWN IS THE BEST SINGLE CORE-TYPE FOR A 

HOMOGENEOUS DESIGN. 

Number of core-types in HCMP Core combination 
1 (homogeneous design) A 
2 A, LW 
3 A, LW, N 
4 A, L, N, W 

We see that, irrespective of the number of core-types, the 
A core-type – which is also the best single core-type for a 
homogeneous design (called the “average” core-type) – is 
always present in the optimal heterogeneous design. We 
further see that the other core-types in the optimal HCMP 
(called “accelerator” core-types) aim to remove distinct 

bottlenecks. In the optimal 2-core-type HCMP, in addition to 
core-type A, we have core-type LW, which has both a larger 
window (L) and a wider issue width (W). Core-type LW 
targets application phases with a window bottleneck or a 
width bottleneck. In addition to core-types A and LW, the 
optimal 3-core-type HCMP has core-type N (narrow core) that 
focuses on application phases with a severe ILP bottleneck. In 
the optimal 4-core-type HCMP, in addition to retaining core-
types A and N, two others emerge: core-type L (large-window 
core) which targets application phases with a window (reorder 
buffer, issue queue) bottleneck, and core-type W (wide core) 
which focuses on application phases with a width (fetch width, 
issue width) bottleneck. In other words, in the optimal 4-core-
type HCMP, core-type L targets application phases with 
distant ILP, core-type W targets application phases with 
nearby ILP, core-type N targets application phases with low 
ILP, and the average core-type targets all other application 
phases. 

TABLE III: MICROARCHITECTURE CONFIGURATIONS OF DIFFERENT CORE-
TYPES IN THE UNCONSTRAINED HCMP DESIGNS. 

Core 
Type 

Clock 
Period 
(ns) 

ILP-extracting 
buffers 
(IQ,LSQ,ROB) 

Widths 
(fetch, issue) 

Caches (KB)
(I$, D$) 

A 0.6 32, 128, 128 3, 4 64, 64 
N 0.5 32, 64, 64 2, 2 16, 16 
L 0.7 48, 128, 384 4, 4 128, 128 
W 0.7 32, 128, 128 6, 6 128, 32 
LW 0.7 48, 128, 192 4, 5 128, 32 

The change between the 3-core-type and 4-core-type 
HCMPs is quite interesting: the provisioning of one more 
core-type causes core-type LW, present in the 3-core-type 
HCMP, to be “split” into two, more specialized core-types L 
and W that each concentrate on only one of the two 
bottlenecks. Consequently, L is freed to be even larger than 
LW (but same issue width as A) and W is freed to be even 
wider than LW (but same size as A), so that each targets their 
respective bottlenecks more effectively than the in-between 
LW core-type. 

In summary, the optimal HCMP consists of (1) an 
average core-type that is comparable to current commercial 
high-performance superscalar processors (4-issue, 128 in-
flight instructions, etc.) and is also the best single core-type in 
a homogeneous design, (2) accelerator core-types that match 
distinct and intuitive ILP behaviors. The next section uncovers 
if this average core/accelerator core phenomenon is also 
applicable for an HCMP design with a given single-thread 
power budget. 

C. Power-constrained HCMP Design 

To understand the effect of imposing a power budget on 
the optimal HCMP design, we vary the power budget from 
1.5W to 5.5W at 1W intervals.  

The optimal HCMP designs for peak power constraints 
of 5.5W, 4.5W and 3.5W are found to be the same as that with 
the unconstrained power budget. This shows that the optimal, 
unconstrained HCMP design is still a good, power-efficient 
design. This is due to the fact that frequency, like power, 
provides a disincentive for making cores arbitrarily complex.  



The core-types obtained in the optimal 4-core-type 
HCMP design with a 2.5W peak power constraint are given in 
Table IV. In Table IV, the A1 core-type is the best single 
core-type for a homogeneous design (average core-type) for 
the 2.5W power budget. Core-type W1 has a bigger width and 
hence concentrates on application phases with a width 
bottleneck. Core-type L1 has a bigger window and hence 
focuses on application phases with a window bottleneck. 
Core-type N1 has a higher clock frequency and hence targets 
application phases with an ILP bottleneck. 

TABLE IV: MICROARCHITECTURE CONFIGURATIONS OF DIFFERENT CORE-
TYPES IN THE 4-CORE-TYPE HCMP WITH 2.5W POWER BUDGET. 

Core 
Type 

Clock 
Period 
(ns) 

ILP-extracting 
buffers 
(IQ,LSQ,ROB) 

Widths 
(fetch, issue) 

Caches (KB)
(I$, D$) 

A1 0.6 32, 128, 128 3, 4 64, 64 
N1 0.5 32, 64, 64 2, 2 16, 16 
W1 0.7 48, 128, 128 4, 5 128, 32 
L1 0.8 64, 128, 256 4, 5 32, 64 

At a 1.5W power budget, we find that there is no 
performance improvement if we have more than 3 core-types. 
This is because at the 1.5W power budget, the HCMP design 
is so constrained that there are only 202 feasible core-types 
(compared to 13,966 core-types in the original design space). 
The core-types obtained in the optimal 3-core-type HCMP 
design with a 1.5W peak power constraint are given in Table 
V. 

TABLE V: MICROARCHITECTURE CONFIGURATIONS OF DIFFERENT CORE-
TYPES IN THE 3-CORE-TYPE HCMP WITH 1.5W POWER BUDGET. 

Core 
Type 

Clock 
Period 
(ns) 

ILP-extracting 
buffers 
(IQ,LSQ,ROB) 

Widths 
(fetch, issue) 

Caches (KB)
(I$, D$) 

A2 0.6 48, 32, 64 3, 2 64, 8 
L2 1.0 16, 128, 192 3, 4 128, 128 
W2 0.8 16, 64, 64 3, 6 128, 16 

We see that irrespective of the number of core-types, the 
average core-type always shows up in the optimal design for 
both 2.5W and 1.5W power budgets. 

IV. APPLICATION STEERING IN HCMP 

Our steering algorithm works as follows. The program is 
continuously monitored using performance counters, a counter 
for each potential bottleneck. Every 10K instructions, the 
counters are compared against threshold values (and reset for 
monitoring in the next interval). If a given counter exceeds its 
threshold, the application is deemed to suffer the 
corresponding bottleneck in the measured interval on the 
current core. If there is an accelerator core-type that relieves 
any of the bottlenecks and does not worsen any of the 
bottlenecks, the application will migrate to that core-type, 
otherwise it will remain on or migrate to the average core-
type. Each accelerator core-type has its own bottleneck 
signature which indicates its “bottleneck strengths”, i.e., 
bottlenecks that it relieves, and “bottleneck weaknesses”, i.e., 
bottlenecks that it worsens. The average core-type does not 
have a bottleneck signature because it is the default and all 
other core-types are gauged with respect to it. 

Section IVA describes the performance counters and 
their thresholds, for diagnosing the application’s bottlenecks. 
Section IVB describes a simple methodology for designers to 
derive bottleneck signatures for core-types in any HCMP 
design, i.e., characterize bottleneck strengths and bottleneck 
weaknesses for each core-type relative to the best core-type, 
on average, in the design. 

A. Diagnosing Bottlenecks 

Table VI shows the performance counters used for 
diagnosing bottlenecks [25] of the application in the current 
interval on the current core-type.  

TABLE VI: COUNTERS USED FOR DIAGNOSING BOTTLENECKS. 
Performance counter Comments 
Branch misprediction 
stall counter 

Number of cycles stalled due to branch 
misprediction 

L2-cache stall counter Number of cycles stalled due to L2 cache miss 
I-cache stall counter Number of cycles instruction fetch is stalled 

because of instruction cache miss 
D-cache stall counter Number of cycles a load is stalled because of 

data cache miss 
Issue-width stall 
counter 

Number of cycles in which ready instructions 
stall because of lack of issue width 

Window stall counter Number of cycles in which instruction dispatch 
is stalled because of a blocked issue queue, 
reorder buffer, load queue or store queue.  

Cycle counter Total cycles to execute the profiled segment 

Only seven counters are used, hence, area and power 
overheads for bottleneck diagnosis are negligible. Each of 
these counters, except the cycle counter, denotes the cycles 
stalled due to the corresponding resource or factor. Once the 
measurement interval (10K instructions) is complete, the 
counters are normalized with respect to the total cycle count of 
the measurement interval. If a normalized performance 
counter is above a certain threshold, then the corresponding 
resource or factor is considered a bottleneck. 

Thresholds are determined empirically using genetic 
algorithms for each resource/factor and for each core-type.  
We use a set of threshold values in the bottleneck signature 
table as the input to the genetic algorithm. For training, we 
select four benchmarks having different application 
characteristics: bzip, mcf, swim and mgrid. The objective 
function for the genetic algorithm is to maximize the 
performance value obtained by bottleneck steering using the 
given bottleneck signature table. 

B. Deriving Bottleneck Signatures of Core-types 

Bottleneck signatures of accelerator core-types are 
derived by the designers of the HCMP at design-time. This 
section describes a methodology for doing so. 

The basic idea is to identify individual strengths and 
weaknesses of an accelerator core-type relative to the average 
core-type. For example, the strength of core-type L (large 
core) is its larger window and its weakness is its lower 
frequency. Then we identify the bottlenecks corresponding to 
its strengths and weaknesses. For example, the bottleneck 
corresponding to the strength of core-type L is the window 
bottleneck. Similarly, the bottlenecks corresponding to the 
weakness of core-type L are the L2 cache bottleneck and 
branch misprediction bottleneck, because these ILP-degrading 



factors serialize execution, and serial regions favor high 
frequency over large window or width.  

To generalize, let the bottlenecks corresponding to 
strengths be S1, S2, S3,... and those corresponding to  
weaknesses be W1, W2, W3,… Then, the signature of the 
core-type is {S1 || S2 || S3...} && !{W1 || W2 || W3...}. In 
other words, application phases having S1 or S2 or S3 
bottlenecks and at the same time not having W1 or W2 or W3 
bottlenecks, will prefer this core-type. 

To demonstrate, we derive the bottleneck signatures of 
core-types in the unconstrained 4-core-type HCMP. It has 
core-types L, W, N and A. Core-type L has a bigger window 
(reorder buffer, issue queue and load/store queues) than the 
other core-types. Hence, application phases having a window 
bottleneck will prefer core-type L. In addition, if the 
application phase is to take advantage of a large window, it 
should not have branch misprediction or L2 cache bottlenecks. 
Similarly, core-type W has a wider width than all the other 
core-types, hence, application phases having a width 
bottleneck, no branch misprediction bottleneck, and no L2 
cache bottleneck, will prefer core-type W. Core-type N has a 
narrower width and a smaller window. However, it has a 
higher clock frequency. Hence, application phases having low 
ILP will prefer core-type N. That is, application phases having 
branch misprediction or L2 cache bottlenecks will prefer core-
type N. The above discussion is summarized in Table VII(a). 
If the diagnosed bottlenecks of the application do not match 
any of the above signatures, then it is steered to core-type A.  

TABLE VII(A): BOTTLENECK SIGNATURE TABLE FOR THE UNCONSTRAINED 4-
CORE-TYPE HCMP. (CORE-TYPE A DOES NOT HAVE A SIGNATURE.) 

Bottleneck Signature Core type 
Window && !(CTRL || L2) L 
Width && !(CTRL || L2) W 
(CTRL || L2) && !(Width) N 

We can fine-tune the bottleneck signature table by taking 
into account the I-cache and D-cache behaviors. We see that 
core-type L has bigger caches. Hence, application phases 
having I-cache or D-cache bottlenecks will prefer core-type L. 
Similarly, core-type W has a bigger I-cache but a smaller D-
cache. Hence, application phases having an I-cache bottleneck 
and no D-cache bottleneck will prefer core-type W. The 
updated bottleneck signature table is presented in Table 
VII(b). 

Because the N core-type has a smaller window, one 
might conclude that this factor should be included in the 
signature’s weaknesses term, i.e., … !(Width || Window). 
However, if we have a L2 bottleneck, then L2-missed load 
instructions will definitely clog the window, causing there to 
be a window bottleneck, too. In other words, there is a 
window bottleneck whenever there is a L2 bottleneck. This 
will cause the naively prescribed signature of the N core-type 
((… || L2) && !(… || Window)), to not be set when there is a 
L2 bottleneck. Hence, the signature of the N core-type is 
changed to (CTRL || L2) && !(Width). Similarly, when there 
is a L2 cache bottleneck, there will be I-cache and D-cache 
bottlenecks, too. Accordingly, we also exclude I$ and D$ from 

the weaknesses term of N’s signature. Please note that this is 
the only exception to the algorithm for deriving signatures. 

TABLE VII(B): UPDATED BOTTLENECK SIGNATURE TABLE FOR THE 

UNCONSTRAINED 4-CORE-TYPE HCMP. 

Bottleneck Signature Core type 
(Window || I$ || D$) && !(CTRL || L2) L 
(Width || I$) && !(CTRL || L2 || D$) W 
(CTRL || L2) && !(Width) N 

 

C. Discussions 

1) Power-constrained HCMPs 
Bottleneck signatures are derived for the power-

constrained HCMPs using the same method. Due to limited 
space, we do not walk through the derivation and only show 
the end results in Tables VIII and IX. 

TABLE VIII: BOTTLENECK SIGNATURE TABLE FOR 4-CORE-TYPE HCMP 

UNDER 2.5W POWER BUDGET. (CORE-TYPE A1 DOES NOT HAVE A SIGNATURE.) 

Bottleneck Signature Core type 
(Window) && !(CTRL || L2 || I$) L1 
(Width || I$) && !(CTRL || L2 || D$) W1 
(CTRL || L2) && !(Width) N1 

TABLE IX: BOTTLENECK SIGNATURE TABLE FOR 3-CORE-TYPE HCMP UNDER 

1.5W POWER BUDGET. (CORE-TYPE A2 DOES NOT HAVE A SIGNATURE.) 

Bottleneck Signature Core type 
(Window || D$) && !(CTRL || L2) L2 
(Width || I$) && !(CTRL || L2) W2 
 

2) Multi-programmed Workloads 
For a multi-programmed workload, the bottleneck-driven 

steering algorithm works similar to a single-threaded 
workload. The algorithm determines the best core-type for 
each benchmark. In case more than one benchmark selects the 
same core-type, we randomly keep one of them in this core-
type and assign other benchmark(s) to unassigned core-types. 

 
3) Arbitrary HCMP Designs 

For an arbitrary HCMP design, which does not follow 
the average/accelerator core phenomenon, we first find the 
best homogeneous core out of the cores in the heterogeneous 
design. We treat this core as the default core. Bottleneck 
signatures of other cores are obtained by following the 
algorithm in Section IVB. 

 
4) Interaction with Operating System 

We advocate the following approach for coordinating the 
operating system (O/S) and the hardware. First, the O/S is 
responsible for macro-scheduling – using nice levels and other 
factors to decide which threads are running versus sleeping in 
the next O/S quantum. Second, the O/S creates two logical 
partitions of the processor. For one partition, the O/S is 
heterogeneity-aware and is in sole control of thread-to-core 
mappings. A configuration register disables hardware steering 
for this partition. For the other partition, the O/S is agnostic of 
thread-to-core mappings, permitting single-thread acceleration 
via bottleneck-driven steering. When the current O/S quantum 
expires, the O/S needs to swap-out selected threads based on 



macro-scheduling. Since threads in the second partition freely 
migrate possibly many times during the quantum, a status 
register is consulted by the O/S scheduler to locate threads to 
be swapped out and only their cores are interrupted. 

The O/S is free to configure the two partitions as it 
desires, from no control at one extreme to full control at the 
other. The first partition (software control) allows not only 
O/S-driven optimization, but also privileged users can request 
particular core-types to run on. 

V. EXPERIMENTAL METHODOLOGY 

A. Benchmarks 

We used the SPEC 2000 benchmark suite with the given 
reference inputs. (FabScalar uses the PISA ISA [1] which 
constrains us to an older version of gcc, hence, many SPEC 
2006 benchmarks could not be compiled.) We simulate the 
first four billion instructions of each benchmark. Please note 
that it is important to simulate for a longer time to capture the 
different phases of the program and to see the effects of thread 
migration. 

B. Metrics 

The performance metric is billions-of-instructions-per-
second (BIPS). To quantify the combined performance and 
power efficiency of our steering algorithm, we use BIPS3/watt. 
BIPS3/watt is a voltage-independent metric, hence, BIPS3/watt 
is preferred over energy-delay-product [23]. Please note that 
watt here refers to average power and not peak power. (Peak 
power was only used in the selection of core-types at design-
time, and only for the power-constrained HCMPs.) 

C. Evaluation Methodology 

The default thread migration overhead, for copying 
registers from old core to new core, is 100 cycles. We also 
show results for overheads of 1K and 10K cycles, and the 
differences are negligible because bottleneck-steering avoids 
unnecessary migrations. We chose 100 cycles as the default in 
order to maximize performance of the state-of-art sampling 
algorithm to which we compare. It is more sensitive to the 
overhead because it does trials on all the core-types during its 
sampling phase, causing more frequent migrations. Thread 
migration incurs extra L1 cache misses and these are 
accounted for in the results. 

All graphs in the result section are normalized with 
respect to running solely on the average core-type of the 
particular HCMP (A, A1, or A2, depending on which HCMP), 
i.e., the best homogeneous design. 

We compare bottleneck-driven steering with the 
following steering algorithms: sampling algorithm, optimal 
steering algorithm and oracle steering algorithm. Note that the 
optimal and oracle steering algorithms cannot be implemented 
practically and are presented as upper bounds. However, we 
do include the thread migration overhead in all the algorithms. 
These algorithms are explained in detail below. 
Sampling algorithm: To model the sampling algorithm 
[3][19], we introduce two parameters: switching interval and 
sampling interval. After every switching interval, the 

application is run on each core-type for the given sampling 
interval. After sampling, the application is run on the best 
core-type found during sampling, for the rest of the switching 
interval. We evaluated different switching and sampling 
intervals and found that a switching interval of 1M 
instructions and a sampling interval of 10K instructions works 
best. 
Optimal steering algorithm: The best core for the current 
10K segment is the core used for running the next 10K 
segment of the application.  
Oracle steering algorithm: For every 10K segment, the best 
core is used for running the application. 

VI. RESULTS 

A. Comparison of Different Steering Algorithms 

In the unconstrained 4-core-type HCMP, the bottleneck-
driven steering algorithm performs 12% better than the 
average core-type for the SPEC benchmark suite (Figure 1). 
We further see that the performance of the oracle steering 
algorithm and the optimal steering algorithm are 15% and 
13% better than the average core-type, respectively. This 
shows that the bottleneck-driven steering algorithm captures 
most of the performance improvement available.  

To make sure that our thresholds and bottleneck 
signatures are applicable in general, we also tested our 
algorithm with SPEC on a different input set (test) and 
MiBench. In both SPEC (test) and MiBench, we found that 
bottleneck steering is able to tap 99% of the performance 
yielded by optimal steering. 

For a deeper understanding, we find the misprediction 
rate and switching rate of the sampling algorithm and the 
bottleneck steering algorithm. The misprediction rate is 
defined as the ratio between the number of 10K segments in 
which the best core is not predicted correctly and the total 
number of 10K segments. Similarly, the switching rate is 
defined as the ratio between the number of times the program 
switches cores and the total number of 10K segments. The 
extent to which a given misprediction impacts performance 
depends on how suboptimal the predicted core-type is for the 
10K segment, whether or not it underperforms the average 
core-type (potential slow-down), and whether or not a core 
switch was undertaken (overhead). A core switch always 
incurs a time penalty. 

In Figure 2, we see that the switching rate for the 
bottleneck steering algorithm (switch_bot) is less than or 
comparable to the sampling algorithm (switch_samp). 
Similarly, for all benchmarks except gcc, ammp and equake, 
the misprediction rate for bottleneck steering (misp_bot) is 
less than or comparable to sampling (misp_samp). Hence, for 
most benchmarks, the bottleneck steering algorithm performs 
better than or comparable to the sampling algorithm. For gcc 
and ammp, because of higher misprediction rates, bottleneck 
steering performs worse than sampling. For equake, even 
though bottleneck steering has a higher misprediction rate, 
bottleneck steering performs slightly better than sampling 
because of a lower switching rate and potentially mild 
suboptimality of the mispredicted core-type. 



Figure 3 shows the occupancy of different core-types in 
the unconstrained 4-core-type HCMP assuming oracle 
steering. It is interesting to see that there are significant 
differences in the occupancies of different core-types, across 
benchmarks. 

 
Figure 3: Number of instructions spent in each core-type in the unconstrained 

4-core-type HCMP. 
 

B. Robustness Analysis 

1) Efficiency Metric 
For the robustness analysis, we first study the change in 

metric from performance (BIPS) to efficiency (BIPS3/watt). 
To evaluate the efficiency of our steering algorithm, we 
compare BIPS3/watt for our steering algorithm with that of the 
average core-type.  In Figure 4, we see that our steering 
algorithm outperforms the average core-type by 33% in terms 
of efficiency. In contrast, the sampling algorithm only 
performs 25% better than the average core-type.  

 
Figure 4: Average normalized efficiency (BIPS3/watt) of different steering 

algorithms. 

2) Changing Thread Migration Overhead 
Figure 5 shows sensitivity to the thread migration 

overhead. With a thread migration overhead of 1,000 cycles, 
the average performance gain is 11%. If we further increase 
the thread migration overhead to 10,000 cycles, the average 
performance gain reduces to 10%. This shows that even with 
one or two orders of magnitude increase in thread migration 
overhead, the performance does not reduce drastically.  

 
 

 
Figure 5: Impact of thread migration overhead. 

 
Figure 1: Performance of bottleneck-driven and other steering algorithms for 4-core-type HCMP. 

 

 
Figure 2: Comparison of switching rate and misprediction rate of sampling algorithm with that of bottleneck-driven steering algorithm.  

 



C. Power-constrained HCMPs 

The 2.5W and 1.5W HCMP results are shown in Figure 
6. (Please see Section IIIC for constrained HCMP design 
configurations.) At the 2.5W power budget, the bottleneck-
driven steering algorithm in the 4-core-type HCMP performs 
8% better than the average core-type (at 2.5W power budget), 
as opposed to the 11.5% performance gain achieved by oracle 
steering. Note that the performance value obtained at 2.5 W is 
normalized to the best homogeneous core-type at 2.5W. At the 
1.5W power budget, the bottleneck-driven steering algorithm 
in the 3-core-type HCMP performs 11% better than the 
average core-type (at 1.5W power budget), as opposed to the 
15% performance gain achieved by oracle steering. 

 
Figure 6: Performance of bottleneck-driven and other steering algorithms for 

HCMPs at different power budgets. 

D. Multi-programmed Workloads 

For creating multi-programmed workloads from SPEC 
benchmarks, we make use of the clusters obtained by 
subsetting of SPEC benchmarks by Phansalkar et al. [30]. We 
create four classes of 4-benchmark workloads for the 4-core-
type HCMP by selecting benchmarks from various clusters. In 
the first class, we select four benchmarks all from different 
clusters. In the second, third and fourth classes, we get 
benchmarks from three clusters, two clusters and one cluster, 
respectively. Figure 7 shows the performance results for the 4-
core-type HCMP for multi-programmed workloads. Label N 
(A, B, C, D) denotes a workload created from N clusters, 
specifically, the Ath, Bth, Cth and Dth cluster in Table 2 in [30].  

In Figure 7, for oracle steering, for every 10K instruction 
interval of the multi-programmed workload, we choose the 
best application-to-core mapping out of 4! (4 factorial) 
possible mappings. Sampling algorithm is not shown because 
of massive overhead for multi-programmed workload. We see 
that average normalized performance of bottleneck-driven 
steering algorithm of 4-core-type HCMP is 9% better than the 
4-core-type homogeneous CMP. In contrast, the oracle 
steering algorithm performs 18% better than the 4-core-type 
homogeneous CMP. This shows that there is room for 
improvement in the bottleneck-driven steering algorithm for 
multi-programmed workloads by using a more sophisticated 
conflict resolving mechanism (instead of just random), such as 
ranking the severity of bottlenecks. We leave this for future 
work. 

E. Arbitrary HCMP Design 

In Figure 8, we evaluate our bottleneck-driven steering 
algorithm on a 3-core-type HCMP which does not follow the 
average/accelerator core phenomenon. The 3-core-type HCMP 

does not have an average core-type and has core-types N, L 
and W. We see that bottleneck-driven steering is able to obtain 
most of the performance of optimal steering. Note that this 
graph has been normalized to the performance of oracle 
steering. 

 

 
Figure 7: Performace of bottleneck-driven steering algorithm for 4-core-type 

HCMP for multi-programmed workloads. 
 

 
Figure 8: Performace of bottleneck-driven steering algorithm for a 3-core-type 

HCMP having core-types N, L and W. 

VII. RELATED WORK 

A. HCMP Design 

Early work on HCMPs assumed that the cores consisted 
of different generations of the Alpha processor family or 
frequency-scaled versions of x86 processors [18][19]. Thus, 
the constituent cores are monotonic.  

Subsequently, Kumar et al. [20] demonstrated significant 
performance benefits for multi-programmed workloads when 
the HCMP is designed from the ground-up. The resulting 
cores are non-monotonic. Their non-monotonic designs differ 
from ours – and are contrary to average core / accelerator core 
– for at least two reasons. First, they do not consider the effect 
of superscalar complexity on core frequency. All cores in their 
design space have the same pipeline depth and frequency, 
from the smallest/narrowest core to the biggest/widest core. 



This is evident in the fact that the best CMP design at their 
largest area and power budget is a homogeneous design 
comprised of only one core type: the most complex core type 
in the design space. In this paper, even when we do not 
constrain area or power, the optimal CMP does not contain 
our most complex core and it is heterogeneous. The ILP / 
frequency trade-off is a sufficient forcing function for both 
restraint and core diversity. Second, the focus of their HCMP 
design is on maximizing throughput and ours is on minimizing 
latency of a single thread (core-selectable processor), although 
we did present a global aspect of the steering algorithm for 
multiple contending threads. Together, these two differences 
explain why Kumar et al. did not observe the average core / 
accelerator core phenomenon. We believe the two studies are 
complementary and provide unique perspectives for the 
architecture community. Finally, our work includes a steering 
algorithm whereas Kumar et al. used oracle steering. 

Azizi et al. [2] studied the energy-performance tradeoffs 
in processor architecture and performed a marginal-cost 
analysis. We find the optimal HCMP designs for maximizing 
single-thread performance for both unconstrained and 
constrained power budgets. Further, our analysis is based on a 
detailed high-fidelity RTL model [6]. 

Choudhary et al. [6] studied a workload-agnostic palette 
of 21 core types. Lee et al. [21] found the optimal HCMP for 
efficiency (BIPS3/watt) using K-means clustering. Neither 
work uncovers the average/accelerator core insight or 
leverages the unified view of core selection and application 
steering. 

Dynamic voltage and frequency scaling (DVFS) is 
orthogonal to heterogeneity. Further, Grochowsky et al. [13] 
found HCMP provided more benefit compared to DVFS. In 
addition, recent research has shown that DVFS is showing 
diminishing returns on newer platforms [34]. Non-monotonic 
HCMP provides a compelling alternative. 

B. Application Steering in HCMP 

Current techniques for steering fall into the following 
categories: sampling-based approaches, heuristics-based 
approaches, static approaches and model-based approaches. 

1) Sampling-based Approaches 
Sampling-based approaches run the application on every 

core type after a switching interval to determine the best core 
type for the application for the next interval. 

Kumar et al. [19] proposed the sampling algorithm for 
steering in a monotonic HCMP. Becchi et al. [3] proposed a 
steering algorithm, which relied on the speedup factor 
(performance improvement on a fast core relative to a slow 
core) for a monotonic HCMP. The speedup factor was 
computed by running a thread on each core separately. Winter 
et al. [41] explored thread scheduling and global power 
management techniques in HCMP. They compared different 
algorithms like brute force, greedy and local search for thread 
scheduling. All examined schemes required sampling to 
determine the best thread-to-core assignment. Sawalha et al. 
[33] proposed recording IPCs of the different program phases 
in a table and using it for scheduling when the phase recurs. 
However, it still required sampling the performance of the 

threads on each core type. Sondag et al. [37] also records past 
phase behavior, but uses a static analysis tool to mark phases 
in the binary a priori and also insert performance 
measurement code for each phase. 

Each of the above sampling techniques suffers from the 
overhead of successively migrating the application on all the 
core types after every switching interval. Further, this 
overhead would increase with the number of core types [8]. In 
our technique, the application directly migrates from the 
current core type to the best core type without any need for 
sampling. 

2) Heuristics-based Approaches 
Saez et al. [32] proposed a dynamic algorithm for 

steering program phases among homogeneous cores running 
at two different frequencies (emulating the big core/little core 
class of monotonic HCMP). They measured the L2 miss rate 
to find the optimal core mapping. Koufaty et al. [17] used 
proprietary tools to emulate an asymmetric system where the 
cores differed in the number of micro-ops that could be retired 
per cycle. They assumed cores of two types: a big core 
capable of retiring four micro-ops per cycle and a small core 
capable of retiring a single micro-op per cycle. Still, these 
cores are monotonic in nature and do not exploit the full 
performance advantage of HCMP design. They correlated the 
application behavior with off-chip and on-chip stalls. They 
scheduled the applications suffering from memory stalls and 
other resource stalls on the smaller core and the rest on the 
bigger core. Patsilaras et al. [29] dynamically scheduled 
threads based on the amount of MLP which is estimated by 
the number of L2 misses. 

It has been shown that the above approaches may cause 
suboptimal scheduling as memory intensity alone is not 
enough for determining the optimal workload-to-core mapping 
[8]. Further, these techniques were conceived and evaluated 
for the big core/little core class of monotonic HCMPs, and it is 
not clear how they can be extended to non-monotonic 
HCMPs.  

Rodrigues et al. [31] proposed a tiled architecture 
wherein each tile has two core types, one with strong integer 
resources and weak floating-point resources and vice versa for 
the other. Hence, the cores are non-monotonic, but in a less 
subtle way than our HCMP: thread swapping is based on 
percentages of integer and floating-point instructions. 

3) Static Approaches 
Static approaches use offline techniques to determine the 

optimal core mapping for the code fragment. 
Chen and John [5] proposed a scheduling algorithm that 

matches programs and cores. Programs and cores are 
projected onto a common multi-dimensional space: programs, 
based on their resource demands, and cores, based on their 
configurations. The scheduler then assigns programs to cores 
based on Euclidean distances between them. The approach 
exploits only inter-program diversity and does not adapt to 
phase changes within programs. Shelepov et al. [35] proposed 
a static algorithm for steering program phases among 
frequency-scaled versions of the same processor. They 
embedded reuse distance profile signatures into the binary, 



which enable the core to quickly estimate the L2 cache miss 
rate. Using the L2 cache miss rate, they were able to find the 
optimal core mapping.  

These static approaches require that workloads be 
profiled beforehand. Further, the workload behavior may be 
drastically impacted by the input data [8]. On the other hand, 
our technique is a dynamic technique. 

4) Model-based Approaches 
Model-based approaches use a dynamic model to 

determine the best core for the application. 
Craeynest et al. [8] collected MLP and ILP information 

to predict the performance on the other core in a big core/little 
core style monotonic HCMP. Dubach et al. [9] used machine 
learning to dynamically predict the best hardware 
configuration for a program phase in a reconfigurable 
processor. Lukefahr et al. [22] designed a predictive-based 
feedback controller for switching in a closely-coupled big 
core/little core monotonic HCMP. 

It is unclear how these techniques can be adapted to a 
non-monotonic HCMP. Our technique uses a bottleneck 
model to predict the optimal workload-to-core mapping in a 
non-monotonic HCMP. 

VIII. SUMMARY AND FUTURE WORK 

HCMPs are an attractive substrate for improving single-
thread performance and energy efficiency. More powerful 
classes of HCMPs employ non-monotonic core types where 
each core type is performance-optimized to different 
instruction-level behavior and hence cannot be ranked – 
different applications achieve their highest performance on 
different cores. Although non-monotonic heterogeneous 
designs offer higher performance potential than either 
monotonic heterogeneous designs or homogeneous designs, 
steering applications to the best-performing core is 
challenging due to performance ambiguity of core types. 

In this paper, we present a unified view of selecting non-
monotonic core types at design-time and steering programs to 
cores at run-time. After comprehensive evaluation, we found 
that with N core types, the optimal HCMP for single-thread 
performance is comprised of an “average” core-type coupled 
with N-1 “accelerator” core-types that relieve distinct resource 
bottlenecks in the average core-type. This inspires a 
complementary steering algorithm in which the application is 
continuously monitored for bottlenecks. The application is 
migrated to a core-type that relieves the bottlenecks. 

HCMPs open up a whole new direction of 
microarchitecture research. Many microarchitectural 
optimizations, which have been proposed before, have never 
been put into practice. One possible reason is that they do not 
provide universal benefit and may actually degrade 
performance in some circumstances. As each core-type targets 
a narrow workload space, HCMP provides a great platform to 
reconsider these optimizations. Techniques that harness far-
flung ILP, like run-ahead execution [24], continual flow 
pipelines, checkpoint processing and recovery [38], etc., are 
worth exploring for the large (L) core-type in our 4-core-type 
HCMP. Similarly, optimizations that help in finding nearby 

ILP, like trace cache, clustered architecture, value prediction, 
etc. [16], are worth exploring for the wide (W) core-type. 
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