
Peer Interaction Effectively, yet Infrequently,
Enables Programmers to Discover New Tools

Emerson Murphy-Hill and Gail C. Murphy

ABSTRACT
Computer users rely on software tools to work effectively
and efficiently, but it is difficult for users to be aware of all
the tools that might be useful to them. While there are sev-
eral potential technical solutions to this difficulty, we know
little about social solutions, such as one user telling a peer
about a tool. To explore these social solutions in one partic-
ular domain, we describe a series of interviews with 18 pro-
grammers in industry that explore how tool discovery takes
place. These interviews provide a rich set of qualitative data
that give us detailed insights into how programmers discover
tools. One finding was that, while programmers believe that
discovery from peers is effective, they actually discover tools
from peers relatively infrequently. Another finding was that
programmers can effectively discover tools from their peers
both in a co-located and remote settings. We describe sev-
eral implications of our findings, such as that discovery from
peers can be enhanced by improving programmers’ ability to
communicate openly and concisely about tools.

ACM Classification Keywords
D.2.6 Software Engineering: Coding Tools and Techniques

General Terms
Human Factors

Author Keywords
discovery, learning, programmers, programming tools

INTRODUCTION
Software features or tools, such as the ability to correct gram-
mar in Microsoft Word or to recover recently closed tabs in
Mozilla Firefox, allow users to perform their tasks more ef-
ficiently and do things they were unable to do previously.
However, users have difficulty becoming aware of tools that
might be useful to them. For example, when Grossman and
colleagues conducted a study of 10 users of a computer-
aided drafting application, they found that a “typical prob-
lem was that users were not aware of a specific tool or oper-
ation which was available for use” [6, p. 655]. As another

NCSU CSC Tech Report TR-2010-19

(02:02:21 PM) FEZ: Hold on.

(02:02:23 PM) FEZ: What did you just do?

(02:02:39 PM) HAL: Replace the first three argu-
ments with a combined one.

(02:02:39 PM) FEZ: How’d you do that delete?

(02:02:45 PM) HAL: Oh. ’d%’

(02:02:59 PM) FEZ: But then you deleted the ->
too.

(02:03:19 PM) HAL: Yeah, it scans forward for the
next open thingy, then to the
matching close thingy.

Figure 1: A snippet of an instant-messaging session where
one user learns about a software feature from another user.

example, Campbell and Miller have noted that awareness
is a problem in integrated development environments that
are used by programmers [2]. It is arguable that in any at
least moderately sophisticated application, many users will
remain unaware of the full range of tools available.

Several technical solutions to the problem of lack of aware-
ness have been proposed. Some applications attempt to solve
this problem with tip-of-the-day messages or role- or task-
based customizations of the user interface. Researchers have
proposed other technical solutions as well, such as recom-
mender systems that suggest tools that you are not currently
using [9, 10, 12].

While there has been much research into technical solutions,
there has been relatively little research into social solutions,
where a user learns about a tool from another user. To il-
lustrate what we mean by social solutions to the awareness
problem, let us give two examples drawn from the study we
describe in this paper.

The first example illustrates how FEZ discovers a tool that
is useful to him from another person. FEZ is a programmer
who often works with a programmer named HAL. While
using a remote screen-sharing session together, FEZ noticed
that HAL did something to make some text move around in
their shared vim editor. Figure 1 shows an exchange that fol-
lowed in an instant-messaging session. In this session, FEZ
gained awareness of a tool that he later found very useful.

The second example illustrates how ELI has often failed to
learn about useful tools from other people. ELI is an inter-
active media producer who uses Twitter (twitter.com), a so-
cial network where people share very brief messages via mi-
croblogging. ELI rarely discovers useful tools through Twit-
ter because the people he interacts with tend to recommend
the “latest and greatest” tools, but not necessarily the most
useful ones.

What are the key differences in the social and technical con-
texts that allow FEZ to discover useful tools when program-
ming with a peer, yet often disallow ELI to discover them
through microblogs? In this paper, we explore these contexts
by focusing on programmers, both because we are conver-
sant with the tools that programmers may use and because
the range of tools available to programmers is so wide. Our
long-term research goal is to encourage software users to
discover tools more successfully, more frequently.

Previous research by Cockburn and Williams [3] has sug-
gested that tools are frequently discovered when program-
mers work together in an activity known as pair program-
ming. We call this mode of discovery peer interaction, where
programmers discover tools from their peers during normal
software development activities. Using Cockburn and Williams’
research as a starting point, we conducted interviews to de-
termine how peer interaction works and how it relates to
other modes of discovery, such as Twitter and exploring an
application’s user interface. Based on our observations, we
then discuss several implications for helping programmers
discover new tools.

The three main contributions of this paper are:

• a characterization of peer interaction, a mode of discov-
ery where programmers learn about the existence of new
tools from peers;

• evidence that peer interaction may be the most effective
way for programmers to learn new tools, yet it appears
to occur infrequently; and

• implications for how the social process of peer interac-
tion can be fostered so that it can occur more frequently
in the future.

TERMINOLOGY
We are interested in how programmers discover tools, but
what are tools, and what is discovery? By tools, we mean
any software that helps a programmer accomplish a task, in-
cluding standalone programs like development environments
and features or commands in those environments, like source
code formatters. Note that, while we will mention several
tools in this paper in examples of discovery, we will not ex-
plain the specifics of those tools.

When we say that a programmer discovers something, we
mean that she becomes aware of that feature. Findlater and
McGrenere distinguish findability from awareness; “findabil-
ity measures the speed with which users can find known
functions, and awareness measures the degree to which users
are conscious of the full set of available functions” [5]. Sim-

ilarly, we define a discovery to mean the event in which a
user finds out about a tool that she did not know about.

Discovery is also closely related to, but distinct from, learn-
ing, in that discovery can be thought of as the first stage of
some kinds of learning. We defer a thorough discussion of
the relationship between learning and discovery to the Re-
lated Work section.

A STUDY OF PEER INTERACTION
To study whether and how programmers discover new tools
from peers, we conducted a series of interviews with pro-
grammers in industry. In the interviews, we discuss two
forms of peer interaction: peer recommendation and peer
observation. We hypothesized that peer recommendation
and peer observation may occur during pair programming,
when two programmers work on the same programming task
at the same computer. In such situations, the “driver” is at
the keyboard, and the “navigator” is sitting beside the driver,
observing and making suggestions [3]. We hypothesized that
a programmer may discover a new tool in either role:

• The driver may discover a new tool when the navigator
says something like, “you know, you could really use tool
X instead.” We call this peer recommendation.

• The navigator may discover a new tool when observing
the driver using the tool, saying something like, “how did
you do that?” We call this peer observation.

Methodology
To better understand peer interaction, we wanted to collect a
substantial number of descriptions of peer interaction. Ide-
ally, we might have observed programmers learning tools
during their normal software development activities. Instead,
we opted to conduct retrospective interviews for several rea-
sons. First, we suspected that peer interaction occurs so in-
frequently that direct observation is impractical; this suspi-
cion was confirmed by subjects, as we will explain. Second,
interviews allow us to speak with a variety of programmers
at different companies and with varying experience. Third,
interviews allow participants to reflect on motivations and
long-term effects of peer interaction, not just the short-term
effects that are visible from an observing researcher’s per-
spective.

We conducted one-on-one, semi-structured telephone or instant-
messaging interviews lasting about an hour each.1 The in-
terview began with questions to ascertain the subject’s pro-
gramming experience. Next, we referred the subject to a
document that listed several pictures of different kinds of
programming tools, which we chose from the Eclipse and Vi-
sual Studio development environments, as well as the extensi-
ble editors vim and emacs. Although retrospective interviews
are common, the results can be influenced by people’s mem-
ory of discovery and adoption. Therefore, we used the tool
list to help stimulate the subject’s memories of tools that she

1The interview script can be found at (link removed to preserve
anonymity).

2

twitter.com

Table 1: Seven discovery modes, as read to subjects.

Peer Observation where you observe someone else use
a tool while programming that you didn’t know about

Peer Recommendation where someone observes you
programming and suggests the new tool

Tool Encounter where you just happen to find the tool
by exploring the user interface of your development envi-
ronment

Tutorial where you are reading or watching a tutorial that
mentions a new tool

Written Description where you notice that a tool is men-
tioned on a website or publication

Twitter or RSS Feed where you learn about tool from
someone or some site that you are following

Discussion Thread where you learn about a new tool af-
ter reading it on list of comments, forum, or email discus-
sion

might have discovered, using them as recall cues for known-
item memory retrieval [1]. We asked the subject to pick three
tools from the list (or tools similar to tools on the list) and
to describe how she discovered and learned about them. The
purpose was to attempt to ascertain the most frequently oc-
curring modes of discovery, on the assumption that the most
frequently mentioned modes for a certain set of tools are the
most frequent modes.

We then asked the subject to choose, in her experience, the
two most effective modes for discovering new tools. We
clarified effectiveness as how effective each mode is on “your
likeliness to use a tool again.” We gave the subject a list of
seven different discovery modes, as shown in Table 1. We
also encouraged the subject to think of other modes. We
then asked the subject which, in her experience, are the two
least effective modes.

At this point, we revealed to subjects that we were specif-
ically interested in peer observation and peer recommenda-
tion, and asked for the subject to describe her experiences
learning new tools in those modes. We asked the subject to
relate experiences when she was the learner or teacher dur-
ing peer observation and peer recommendation. For each
experience, we asked a semi-structured set of questions to
elicit detailed responses, including the context in which the
learning happened, the nature of the relationship with the
peer, and what was said or done to facilitate learning.

We then asked the subject directed questions about her expe-
rience with peer interaction, including how often she learns
or teaches, and how it has changed over her programming ca-
reer. Finally, we asked the subject some opinion questions,
then thanked the subject and concluded the interview.

To analyze the data that we collected, we recorded the in-
terviews, transcribed and summarized them, categorized the
contents of the summaries by question, characterized the re-

sponses to each question, and identified patterns in responses
and relationships between responses.

Subjects
We recruited subjects from two main sources. First, we
emailed invitations to 62 participants who volunteered to
be contacted at Open Source Bridge 2009, a conference for
“developers working with open source technologies and for
people interested in learning the open source way” (http://
opensourcebridge.org). Second, we sent emails to personal
contacts at seven large companies, asking them to pass on
our invitation to potentially interested colleagues. Two peo-
ple volunteered through these personal contacts and the rest
through Open Source Bridge.

Overall, 18 people responded and completed the interview,
comparable to the size of similar studies such as those by
Twidale (5 subjects) [17] and Rieman (14 subjects) [15].
Subjects had between 3 and 32 years of professional pro-
gramming experience (median=9); not all were employed
as programmers or software developers, although program-
ming played a role in their job, or most recently held job.
Subjects were between the ages of 21 and 51 (median=30.5).
Subjects reported using a total of 18 different editors or de-
velopment environments within the last year; the common
ones (ordered from most to least frequently mentioned) be-
ing vi/vim, emacs, Visual Studio, TextMate, Eclipse, and Netbeans.
Subjects reported using a total of 24 different languages within
the last year; the common ones being python, javascript,
PHP, Ruby, Java, C, and perl.

Subjects reported a variety of working experience, which we
suspected had some effect on peer interaction. We will refer
to subjects in our study by pseudonyms, listed in the left-
most column of Table 2. In the next column to the right, we
list how many years of experience each subject reported. In
the next column, we list whether or not each subject works
on a team with other programmers in their current or most
recent job. The next two columns show which subjects reg-
ularly read technical blogs — websites where people post
regular writings on technical topics — and which subjects
are users of Twitter. We were interested in blogs and Twitter
because we suspected that they played a role in tool discov-
ery. We explain the right two columns of Table 2 in the next
section.

Results
Overall, subjects reported 41 different instances of peer in-
teraction, of which 27 were peer observation and 14 were
peer recommendation. In this section, we describe based on
the data how peer interaction relates to other types of dis-
covery and how it works in the field. At the end of each
subsection, we briefly summarize our findings.

The Steps of Peer Observation
The process of peer observation occurs in several steps: two
programmers interact in some situation, the learner observes
the teacher using a tool that she does not know, the learner
interrupts the teacher, the learner asks a question about the
tool, and then the teacher responds to the learner. In what

3

http://opensourcebridge.org
http://opensourcebridge.org

Table 3: Situations in which tool discovery occurred via peer observation and peer recommendation, with examples.

Situation Description Example
Traditional
Pair
Programming

Two programmers work at
the same computer and
collaborate to complete the
same task.

Peer Observation. While programming with a coworker, DEL noticed Fire-
bug when the coworker used it to solve a problem.

Peer Recommendation. KEN was recommended the Open Type dialog in
Eclipse while pair programming.

Happenstance
Interaction

One programmer observes
another during a chance
encounter.

Peer Observation. KAI had the Labview development environment on his
screen, which caught a coworker’s attention when the coworker walked by.

Peer Recommendation. A peer walked by to say that he updated code; the
peer noticed GUS using repeated update and commit commands, and the
peer recommended the synchronize command instead.

Help Giving A programmer helps a collo-
cated programmer with a task.

Peer Recommendation. HAL recommended the Open Type dialog while
helping a peer with a coding problem.

Remote Help
Giving

A programmer helps a remote
programmer with a task.

Peer Recommendation. While helping a colleague over instant-messaging
with a problem, DON recommended a specific debugger, which the col-
league then used to fix the problem.

Remote Pair
Program-
ming

Two programmers work at
different computers and col-
laborate to complete a task.

Peer Observation. While using a remote vim editor with a peer, FEZ saw
text move; FEZ asked what happened via instant-messaging, and the peer
indicated he was using a feature that FEZ did not know (Figure 1).

Change
Notification

A programmer commits code
to version control, and an
email is sent to the team about
the commit.

Peer Observation. After receiving a change notification, a coworker asked
ENU why he made so many changes. ENU responded that he had made
the changes based on recommendations from Findbugs, showed the peer a
Findbugs report, and the peer ended up downloading and using Findbugs.

Email One programmer observes an-
other’s actions via email.

Peer Recommendation. FEZ sent a progress report to his supervisor; the
supervisor recommended reporting progress on a company wiki. FEZ dis-
covered that using a wiki helps him efficiently keep track of his own tasks
and inform teammates of those tasks.

follows, we describe what programmers told us happens dur-
ing each of these stages.

Observation Situation. Peer observation occurred with sub-
jects in four kinds of situations (Table 3): traditional pair
programming, remote pair programming, happenstance in-
teraction, and change notification.

Tools Observed. Subjects described teaching or learning a
variety of different tools, including tools for debugging (such
as Firebug and Web Developer), tools to help change code
(such as sed/awk and refactoring), operating system tools
(such as quicksilver), tools for collaboration (such as screen
sharing), and shortcuts (such as vim macros).

Interruption Timing. Subjects reported that the learner al-
most always interrupted work to question the teacher, typ-
ically immediately after the tool is used. FEZ also pointed
out an instance where the learner asked the teacher even be-
fore she was finished using the tool and ZAC described an
instance after repeated uses of the tool in the same program-
ming session. In contrast, BEN noted that, over the course
of learning vim from peers, for the most part he did not ask
questions while learning new tools within vim, presumably
because the commands that his teacher was executing were
largely visible and self-explanatory.

Interruption Wording. Typically the interruption is a com-
ment along the lines of “what is that?” (ELI, HAO, ZAC),
“how did you do that?” (FEZ, GUS, HAO, ROB), or an ex-
clamation of amazement or surprise (BEN). Such reactions
to initial tool use were not always polite, such as in the case
of KEN, who recalled a peer remark in response to his tool
use, “what the hell is all this crap?”

Response to Interruption. The teachers’ response to the in-
terruption from the learner varied, though subjects reported
that typically the teacher gave an explanation of what the
tool did and a short demonstration (less than a couple of
minutes). Several subjects also reported that they followed
up with this discovery episode by trying the tool out when
the teacher and learner separated. Other subjects reported
being given URLs by the teacher for later reference.

In sum, subjects reported that peer observation occurs in pair
programming situations, consistent with others researchers’
observations [3], but also in other situations where two pro-
grammers are not working on the same task. Rather than
passive discovery, subjects reported that the observer inter-
rupted the other programmer verbally (or by instant-messaging,
if the interaction was remote), which was followed by an
immediate discussion and demonstration, or post-discovery
exploration and reading.

4

Table 2: Subjects’ pseudonms are displayed in the left-
most column; pseudonyms assigned alphabetically based
on subjects’ experience level (in years). Next, potentially
programming-relevant social activities are listed. Finally,
likeliness to learn or teach tools via peer interaction is listed.
 means that a subject learns via peer interaction between
once every week and twice per month; a G means that a
subject learns every one or two months; and a # means that
the programmer learns between once every three months and
once per year. Programmers estimated that they taught less
often (−), about equally often (≈), or more often (+) than
they learned via peer interaction.

experience team blogs Twitter learn teach
ART 3 X X X G +
BEN 4 X X −
CAL 5 X # +
DEL 6 X X X −
DON 6 X X +
ELI 7 X X G +
ENU 7 X X X # ≈
FEZ 8 X +
GIL 9 X X G +
GUS 9 X X X +
HAL 10 X X G +
HAO 10 X −
KAI 13 X X X # +
KEN 13 X X G ≈
ROB 19 X X X # −
VAL 25 X # ≈
YIT 31 X X # +
ZAC 32 X X # −

The Steps of Peer Recommendation
The process of peer recommendation has steps similar to
peer observation: programmers interact in some situation,
the teacher observes the learner do something for which the
teacher knows an tool alternative exists, the teacher inter-
rupts the learner, and then the teacher delivers the recom-
mendation.

Recommendation Situation. Subjects reported that peer rec-
ommendation happened in five kinds of situations (Table 3):
traditional pair programming, happenstance interaction, help
giving, remote help giving, and email.

Interruption Timing and Wording. As with peer observation,
most subjects reported that the person making the recom-
mendation made it immediately. The recommendation was
sometimes direct, as in “you should use X” (BEN, CAL,
ENU, KEN), and sometimes more subtle, as in “you might
try X” (HAL, GUS). However, not all subjects reported this
immediate interruption. For instance, HAL described watch-
ing a colleague repeatedly open classes inefficiently, and rec-
ommended the Open Type dialog after some time:

I’ll generally leave them to their way of working for a
while before observing a pattern that I think I can help
with. . . they may feel comfortable with what they’re do-
ing, and comfort is important. . . I try to introduce things

slowly, especially when I’m not sure that the person I’m
working with sees it as a problem or thinks that they
need help. If it doesn’t look like they’re suffering too
much, it may be better to leave them alone.

Tools Recommended. Subjects mentioned a variety of tools
that they had learned about via peer recommendation, the
common ones being the Open Type dialog in Eclipse (ENU,
HAL, KEN) and Firebug (ART, HAO). Subjects also de-
scribed discovering Postgres, FTP, emacs tags, a debugger,
and a tool for collaboration.

Recommendation Delivery. As with peer observation, most
subjects reported that the recommender responded by demon-
strating the tool in a task-relevant manner. For example,
when ART recommended Firebug, he demonstrated how it
was used on the same webpage with which the learner was
having trouble. The learner also sometimes followed up the
recommendation by visiting websites or tutorials, and trying
out the tool on their own.

In sum, subjects reported that peer recommendation hap-
pened in similar circumstances to peer observation, with sim-
ilar follow-up. However, in contrast to peer observation,
where the interruption was often made with little trepida-
tion, during peer recommendation subjects reported some-
times exercising more sensitivity to the learner. These re-
sults may suggest that programmers are more comfortable
professing ignorance than expertise.

Frequency of Peer Interaction
We estimated how often peer interaction happens in two dif-
ferent ways. The first way was to ask programmers to tell
us about situations in which they learned about a new tool.
We then categorized each situation according to Table 1 and
compared how often peer interaction was mentioned versus
other discovery modes. This provided an estimate of rela-
tive frequency. The second way was to ask programmers
how many times per year, month, or day they learned about
a new tool. This provided an estimate of absolute frequency.
We also asked programmers to estimate how their frequency
of learning has changed over time.

Peer interaction did not appear to occur particularly frequently,
compared to how often other discovery modes were men-
tioned. In Table 2, a name in a box represents one subject’s
description of an instance of discovery. The number of boxes
in each mode is the total number of instances of discovery
that subjects mentioned. For example, subjects mentioned a
total of three instances of written description: one from CAL
and two from DON. Peer observation was mentioned seven
times by five people; peer recommendation was mentioned
only once.

Likewise, subjects reported learning and teaching via peer
interaction fairly infrequently. The right two columns of Ta-
ble 2 indicate how often subjects reported learning or teach-
ing a tool via peer interaction.

In sum, compared to other discovery modes, peer observa-

5

Tool Encounter ENU ENU GIL GIL GUS GUS HAL HAL ROB ZAC

Tutorial BEN DON KAI KAI ROB VAL VAL ZAC

Peer Observation BEN BEN FEZ HAO HAO YIT ZAC

Discussion Thread DEL DON DON ROB

Twitter or RSS Feed ART FEZ KAI

Written Description CAL DON DON

Peer Recommendation KEN

Figure 2: A histogram of the most frequent discovery modes.

tion and, especially, peer recommendation, were less fre-
quently reported modes of discovery, compared to the most
frequently mentioned mode. This finding is consistent with
Rieman’s field study of learning and discovery, a study which
provided evidence that tool encounter is the most frequent
way of discovering tools in a variety of applications [15].

Effectiveness of Discovery Modes
We asked participants to rate how effective each mode is in
terms of their likeliness to use a tool again in the future.
Specifically, we asked subjects to name their two most ef-
fective modes, though we did not force subjects to choose
exactly two. Figure 3 displays the results.

Peer observation and peer recommendation were rated as the
most effective modes. These ratings are notable because the
question was asked before we revealed to subjects that we
were particularly interested in these two modes.

Effectiveness of Peer Interaction. Subjects reported that peer
observation and peer recommendation were effective for sev-
eral reasons:

• the learner has respect and trust in the teacher, so if the
teacher had a good experience with the tool then the
learner should take it seriously (BEN, CAL, DEL, GUS);

• the learner can reflect on the teacher’s use and apply it to
her own programming (DON, HAL, KEN, YIT);

• programmers enjoy demonstrating their skills (ELI, HAO,
ZAC); and

• the learner and the teacher share a common background
so the tool is more likely to be relevant (ELI, HAL).

Also, subjects found peer observation effective because:

• the learner can see the value of a tool while it is in use
on a real problem (ENU, KEN, ROB, YIT);

• the teacher imparts a minimal amount of tool informa-
tion, allowing the learner to feel like she discovered it
herself and look up more material later (DEL, ELI); and

• the learner can associate the tool with its context of use,
which makes it memorable (FEZ).

Subjects also reported instances when peer observation and
peer recommendation were ineffective, as we will describe
in the Barriers to Peer Interaction section.

Peer Observation BEN CAL DON DEL ELI ENU FEZ HAL HAO KEN ROB VAL

Peer Recommendation BEN CAL FEZ GIL GUS KEN HAL VAL YIT

Twitter or RSS Feed ART DEL DON ROB ZAC

Discussion Thread ELI HAL YIT

Tool Encounter GIL HAL ZAC

Tutorial ART ENU KAI

Written Description HAO

Figure 3: A histogram of the most effective discovery
modes.

Effectiveness of Twitter/RSS. Subjects reported that Twitter/RSS
are effective mechanisms because they trust or value the opin-
ion of the people that they follow (ART, ROB) and they can
gather the opinions of many people all at once (DEL, DON).
However, some subjects reported finding Twitter/RSS inef-
fective, because the density of recommendations is too low
(ART, ELI, HAL, HAO), people tend to recommend the most
popular tools but not the most useful ones (ELI), the sources
have low credibility (CAL), some messages feel like adver-
tising (CAL), and most messages are not relevant to pro-
gramming (KEN). Moreover, HAL felt that Twitter/RSS and
discussion threads were ineffective for the same reasons: the
other party does not have a similar background.

Effectiveness of Discussion Threads. Subjects reported that
discussion threads are effective because subjects reported
having trust in the sources (YIT) and because discussion
threads tend to have a high level of detail (KAI). Others
reported them being ineffective because the people who post
are outside of their trust network (ROB, GUS, CAL).

Effectiveness of Tutorials. Subjects said that tutorials are
effective because they fit with their personal learning style
(ART) and because tutorials, specifically in the form of on-
line screencasts, typically have a real-world example and are
“highly rewindable” (KAI). Other subjects reported that tu-
torials are ineffective because the tools used in tutorials are
not useful, esoteric, or not widely available (FEZ), and be-
cause tutorials require a significant investment of time (YIT).

Effectiveness of Tool Encounters. Although some subjects
reported that tool encounters (finding a tool by chance in the
user interface) were effective, none gave a rationale. Some
subjects reported that tool encounters were ineffective be-
cause the environment that they use does not lend itself to
exploration (BEN, DEL, HAO), a tool encounter takes too
long (HAO), tools found in this manner are easily forgot-
ten (DON), and because exploration tends to lessen as the
programmer becomes more familiar with their environment
(ENU).

Effectiveness of Written Descriptions. Finally, HAO found
written descriptions to be effective because that is how he
currently learns. Others found written descriptions ineffec-
tive because of lack of trust or because there is a suspicion
of marketing (GIL, GUS, KAI, ROB).

6

In sum, subjects rated peer observation and peer recommen-
dation as the most effective modes for discovering new tools.
However, these modes also occur less frequently than other
discovery modes (see Figure 2). This confirms McGrenere’s
conjecture, who pointed out that exploratory learning is the
most frequent kind of learning, but “it may not necessarily
be the most efficient or effective method of learning how to
use a system” [13, p. 15]. Indeed, these results confirm that
it is not the most effective. Another important finding is that
the determinant that subjects most cited as important to the
effectiveness of discovery, whichever the mode, was trust.

Barriers to Peer Interaction
While subjects rated peer interaction as effective, when prompted,
they also listed situations when it had not been effective.
First, physical isolation makes peer interaction difficult be-
cause it is difficult to observe other programmers remotely,
although other programmers reported effective remote ob-
servation. Second, when coworkers are working in entirely
different programming environments, such as one using vim
and another using Eclipse, then there are fewer tools that they
can share. Third, once programmers have worked together
for a certain amount of time, they get acclimated to each
others’ toolsets, so the possibility of discovery is reduced.
Fourth, company policies can inhibit social learning; sub-
jects reported companies dictating which tools to use, even
when they were not the best tool for the job. Fifth, when a
project is under time pressures, such as a release deadline,
programmers may not be willing to set aside time to dis-
cuss a tool during a development task. Sixth, programmers’
themselves are sometimes unwilling to share tool knowl-
edge.

We were especially interested in this last barrier to peer in-
teraction; when are people unwilling to teach or learn? It
is worth mentioning that, for the most part, the program-
mers that we interviewed appeared to be enthusiastic about
learning and teaching tools to peers. However, subjects men-
tioned several cases where a programmer was unwilling to
share or receive tool knowledge. First, ELI and HAL men-
tioned that people are sometimes unwilling to learn about
a new tool because they are not sufficiently mature to ap-
preciate the tool’s usefulness. Second, ROB said that some
programmers simply do not have an interest in learning new
tools. Third, KAI and YIT mentioned that programmers
sometimes feel that they do not need to discover a new tool
because existing tools will do the job. Playing the role of
such a programmer, YIT said:

“Why should I bother? I’ve got ido-mode, I’ve got ack,
I’ve got this, that, and the other. . . the feeling is that, so
far, I’ve made it without that [new] tool.” Developer
inertia, I guess you could call it.

Fourth, FEZ mentioned that, in any given programming ses-
sion, the programmers involved need to feel that they have
made progress to feel positive, and when they end up spend-
ing all of their time learning about new tools, they have the
feeling that it was not time well spent. Finally, DON de-
scribed not learning new tools while programming because

he was uncomfortable billing clients for learning about new
tools.

In sum, subjects reported the barriers to effective peer inter-
action are isolation, toolset differences, toolset acclimation,
company policy, time pressures, peer maturity, lack of in-
terest, “developer inertia,” the necessity of sensing progress,
and client pressures. It is notable that these barriers occur
because of a wide variety of internal and external sources:
the client, the company, the management, the programmer,
the development environment, and the tool.

Flow of Peer Interaction
Although we did not plan to ask subjects explicitly, we be-
came interested in whether peer interaction occurs between
peers or between a supervisor and a subordinate. If inci-
dental tool learning is largely a kind of apprenticeship learn-
ing [8], then we should expect tool knowledge to flow largely
from senior to junior programmers. While ART, FEZ, and
GIL each described an instance of recommendations coming
from supervisors, our results suggest that this is not always
the case.

First, the instances of peer interaction were more often be-
tween peers than between programmers at different experi-
ence levels. As HAL explained, “differences [in skill sets]
make the collaboration interesting, but the similarities make
the collaboration easier.”

Second, two subjects took the opposite view, that during peer
interaction, it is more often the junior programmers who are
the teachers. FEZ and KEN explained this position; junior
members have more free time to explore new tools, making
them more likely to bring new tools into the organization.
KEN said:

The junior members tend to be more voracious in their
desire to learn new APIs and tools, and stay plugged in
to what’s going on with languages and stuff. My time
is spent digging in to more bugs and more things that
I’m responsible for delivering, I have less time to do
independent research. . . No one is upset when a junior
member says they have a better way to do things.

FEZ confirmed this:

There’s a fair amount of bias towards me teaching [other
engineers] something. . . I’m a student, an intern; I’m in
the process of learning as much as I can from as many
tools as I can. . . several developers I know, especially
those that have 10, 20, 30, 40 years of experience, tend
to say that they know the tools that they use, and they
do not necessarily have the time, or more commonly,
the patience to sit down and fiddle with a new tool.

These quotes provide anecdotal evidence that learning about
tools can flow from the bottom upwards.

In sum, although tool knowledge appeared to flow primarily
between peers, it also flows from supervisors to their subor-

7

dinates and from subordinates to supervisors. This finding
may be a result of the relatively flat organization of many
software teams, where programmers feel comfortable ask-
ing about and recommending tools to other programmers,
regardless of seniority.

A Remote Pair Programming Vignette
During the study, we learned that FEZ and HAL sometimes
pair programmed together using a remote vim session. This
offered a unique look into how peer interaction happens,
from the perspective of both peers. Moreover, the two par-
ticipants had saved full instant-messaging histories of their
remote pair sessions, and were willing to share a few snip-
pets of those histories with us.

Figure 1 displays one such occurrence. FEZ reported such
occurrences were fairly common, where he would see some-
thing happen on the screen, ask about it, and HAL would
reply. Interestingly, both peers gave examples of learning
from one another, confirming the bidirectionality of peer in-
teraction. One curious aspect of Figure 1 is that in order
to learn the tool, FEZ needed to understand both the cause
(pressing d%) and the effect (replacing the first three argu-
ments with a combined one). We discuss the significance of
understanding causes and effects in the next section.

Threats to Validity
While this study provided a unique look into how program-
mers discover new tools, there are several threats to the va-
lidity of our study design.

Some subjects noted that it was difficult to remember in-
stances of peer interaction. This difficulty of recall may
have affected the accuracy of the results, especially when
we asked subjects to estimate how often they learn via peer
interaction. We tried to address this threat by focusing on
specific instances of learning rather than generalizations, and
when we did ask subjects more general questions, such as to
estimate discovery modes’ effectiveness, we preceded those
questions by asking subjects to focus on specific instances.

To make conducting the study easier for the interviewer, we
introduced the different discovery modes in a fixed order for
every subject, as shown in Figure 1. This order may have
biased subjects’ effectiveness responses.

The study may suffer from ascertainment bias, because the
programmers are not representative of all programmers, for
two main reasons. First, although we did not ask subjects
about their cultural or geographic background, we suspect
that subjects are largely Americans living in the western United
States. Second, because each study participant volunteered
to spend an hour talking to a researcher about discovery and
learning, it may be that these programmers are more positive
about social learning than the average programmer. Future
studies should be conducted over a wider variety of program-
mers, both socially and culturally.

IMPLICATIONS
We have explored how peer interaction works, as well as
shown that programmers have found it effective yet rela-
tively infrequent. Our results have several implications for
how to make it easier for programmers to discover new tools
from their peers. Moreover, we suspect that these implica-
tions are applicable beyond software development environ-
ments to a variety of applications. We discuss two impli-
cations in this section: how tools and development environ-
ments can make it easier for programmers to discover tools
from peers and how programming teams can encourage peer
interaction.

Improving Tool Discoverability
The results of this study suggest at least two ways toolsmiths
can make programming tools and environments more dis-
coverable, so that when programmers interact, peer interac-
tion is successful.

Noticeable Causes. If the manner in which a tool is used can
be easily observed, then an observing programmer is more
likely to both recognize that a tool was used and, implicitly,
know how the tool is used. Hotkeys, used in many develop-
ment environments so that programmers can quickly invoke
commands, are a negative example because the keys that are
pressed are typically not visible on the screen. One solution
is to show the keys that are pressed on the screen for a few
seconds.

Noticeable Effects. In addition to making the causes of a
tool invocation obvious, peer interaction may be facilitated
if the effects of a tool are clear. Eclipse’s Organize Imports
command is an example of a tool that may not have notice-
able effects; the tool automatically adds and removes import
statements from Java files, but if those statements are not
visible on screen, then an observer may not notice the effect
of running the command.

Peer Interaction without Collocation
As software is developed on a global scale, teams become
more and more distributed, reducing the discovery of tools
during traditional pair programming. The results of our study
also suggest that peer interaction can be facilitated when tra-
ditional pair programming is not possible.

Remote Pair Programming. Several subjects reported learn-
ing new tools via peer interaction with a peer by working
at separate, geographically distributed workstations using a
screen-sharing program. However, additional constraints have
to be satisfied in order for such peer interaction to take place.
First, the pair needs some channel by which to ask “what
just happened?”, such as using instant messaging or tele-
phony. Second, visible causes and effects are especially im-
portant during remote pair programming, because implicit
cues about how a tool is used, such as where a program-
mer’s fingers are on the keyboard or where a programmer is
looking, are absent. Third, programmers need a convenient,
concise way to communicate about their tools. This third
constraint is sometimes difficult to achieve. For example,
if the programmers choose to collaborate using Eclipse and

8

a tool requires several complicated steps to use, the teacher
may be forced to say “first you click here, then here, then
here, then type in this,” and so on. More elegantly, if the pro-
grammers choose to collaborate using an environment with
purely textual commands, like vim, the steps can be easily
represented as a series of brief commands.

Learning from the Strengths of Peer Interaction. In the fu-
ture, we might expect that collocated peer interaction will
decrease as teams become more distributed, while at the
same time, Twitter and internet tutorials (screencasts) may
be increasingly common. Unfortunately, the results of our
study suggest that Twitter and screencasts are not as consis-
tently effective as peer interaction. We view this as an op-
portunity: what can we learn from peer interaction to make
other discovery modes more effective?

Twitter bears some similarity to peer recommendation in that
both are types of social discovery. One reason that sub-
jects cited for Twitter being ineffective is lack of trust in
the sources and lack of relevance. From the interviews, it
appears what programmers meant by trust was that the rec-
ommender (human or otherwise) must have had some prior
interaction with the developer, so that the developer can es-
timate the recommender’s knowledge and skills. Our study
suggests that trust and relevance might improve if the Twit-
ter messages originated from a trusted peer, someone that
a programmer works with or has worked with in the past.
Rather than burdening the trusted peer with having to report
whenever she discovers a new tool, we imagine a system that
automatically notices when she uses a novel tool and gener-
ates Twitter messages on her behalf.

Several subjects reported watching screencasts that were pro-
fessionally produced (e.g., peepcode.com). Although watch-
ing screencasts is similar to peer observation, subjects re-
ported that the tools used in screencasts may not be very rel-
evant, presumably because the people who made the profes-
sional screencasts did not have working styles that aligned
with individual subjects’ working styles. Because peers are
more likely to have similar working styles, a screencast pro-
duced by a peer is potentially more relevant. However, no
subject reported watching a screencast produced by a peer.
We suspect that the reason that programmers do not make
screencasts for their peers is that the costs (recording, edit-
ing, and distributing) are too high compared to the benefits
(the possibility of a peer discovering a tool). KAI hinted at
this; “I wish people did make more screencasts; they’re a
pain in the ass to make.” Better tool support for creation,
editing, and distribution of screencasts may make it more
likely that programmers will produce screencasts for their
peers, improving screencasts’ effectiveness.

RELATED WORK
The study presented in this paper is the first study of which
we are aware of how programmers discover new tools, but
several different research areas are closely related to peer
interaction.

Diffusion of Innovations
Diffusion of Innovations is a theory that attempts to explain
“the process by which an innovation is communicated through
certain channels over time among the members of a social
system” [16]. Typical studies of diffusion of innovations
include research about internet use, hybrid corn in the US,
and water sanitation in developing countries. The study pre-
sented in this paper can be considered a diffusion of innova-
tion study that investigates tool discovery by programmers.

While we are not aware of any studies about diffusion of
innovations involving programmers, several studies have in-
vestigated diffusion of innovations in the more general case
of software engineering. For example, Fichman and Ke-
merer describe how relational databases, programming lan-
guages, and Computer-Aided Software/Systems Engineer-
ing (CASE) tools are acquired and deployed in organiza-
tions [4]. Similarly, Iivari described a study that suggests
that the reason that companies do not use CASE tools is be-
cause of a lack of management support, a lack of perceived
advantage, and a lack of freedom of choice [7].

Such research addresses critical issues, but it also tends to
focus on tools that require a significant investment of time
or money, and thus warrant careful organizational consider-
ation of whether or not to adopt. In contrast, our research
seeks to investigate a broad spectrum of tools, all the way
down to simple features such as code formatters, which likely
require significantly less consideration from individual pro-
grammers than higher-level tools. Thus, while existing re-
search has helped to determine how and why software envi-
ronments have been adopted by organizations, our research
also helps explain how and why programmers discover fea-
tures within those environments.

Learning in Context
Several types of discovery that are similar to peer interaction
have been documented in the literature.

One is Lave and Wegner’s situated learning [8], where the
learning occurs in the same place that the learning is used,
a more general form of peer interaction. For instance, ap-
prenticeships are a kind of situated learning. Whereas Lave
and Wegner have focused largely on a fixed teacher-learner
relationship, our research on peer interaction is on learning
in peer-peer relations. Despite a focus on teacher-learner
relationships, Lave and Wegner imply that there is signifi-
cant potential in peer-peer learning: “There is anecdotal ev-
idence. . . that where circulation of knowledge among peers
and near-peers is possible, it spreads exceedingly rapidly and
effectively” [8, p. 93]. Our study confirms this implication.

Another type of learning is Marsick and Watkin’s informal
and incidental learning, where learning happens as a by-
product of other activities [11]. Marsick and Watkins note
that with this type, “control of learning rests primarily in the
hands of the learner” [11, p. 25]. In contrast, in peer interac-
tion, learning is controlled by two people. By studying peer
interaction with programmers, we extend research on infor-
mal and incidental learning into the domain of programming.

9

peepcode.com

Yet another type is over-the-shoulder learning, where col-
leagues help each other informally to use a computer ap-
plication [17]; over-the-shoulder learning is closely related
to peer interaction in that they both occur among peers and
both in a technology setting. The difference is that work on
over-the-shoulder learning has primarily focused on situa-
tions where the learner explicitly asks for help, not in situa-
tions when the learner discovers a new tool by observation.
In peer interaction, the learner does not initially know that
she might find a tool useful.

Learning During Programming
As mentioned in the Introduction, Cockburn and Williams
have described the learning of tools from peers during pair
programming [3, p. 6–7]:

Knowledge is constantly being passed between part-
ners, from tool usage tips (even the mouse), to program-
ming language rules, design and programming idioms,
and overall design skill. Learning happens in a very
tight apprenticeship mode.
The partners take turns being the teacher and the taught,
from moment to moment.

Similar statements, describing peer interaction (as well as
other kinds of learning), which suggests that knowledge about
tools is passed between programmers, is oft repeated in the
literature, but little evidence previously existed to support it.
Both Cockburn and Williams [3] and Müller and Tichy [14]
provide evidence that student programmers learn a variety
of technologies during pair programming, but as Müller and
Tichy question, “are these conclusions generalizable to pro-
fessional software developers?”

Indeed, these studies prompt many questions about peer in-
teraction. Does this kind of learning happen in the work-
place, as well as in the university? Does it only happen
during formal pair programming sessions, or in other situ-
ations as well? What kinds of tools do programmers learn in
this way? How effective is learning in this way versus other
kinds of learning? What makes this kind of learning effec-
tive or ineffective? How often does it happen? In this paper,
we have extended Cockburn and Williams’ and Müller and
Tichy’s findings by providing a more detailed analysis of the
conditions, process, and results of this kind of learning for
professionals with a variety of programming experience.

CONCLUSION
A wide variety of tools have been built to help programmers,
but individuals must necessarily discover those tools before
they can be used. In this paper, we have described a discov-
ery mode called peer interaction, which encompasses both
peer observation and peer recommendation, in which pro-
grammers learn about the existence of new tools. Based on
information that we have collected in a series of interviews,
peer interaction is the most effective mode for programmers
to discover new tools. Unfortunately, it currently does not
occur as frequently as in other discovery modes. The results
suggest new ways to make existing tools and environments
more discoverable and distributed collaboration more effec-

tive. Likewise, our results may be used to help other types
of software users effectively discover new tools.

REFERENCES
1. B. Allen. Recall cues in known-item retrieval. J. of the

American Soc. for Inf. Science, 40(4):246–252, 1989.

2. D. Campbell and M. Miller. Designing refactoring tools
for developers. In WRT ’08, pages 1–2, 2008.

3. A. Cockburn and L. Williams. The costs and benefits of
pair programming. In XP ’00, pages 223–247, 2000.

4. R. G. Fichman and C. F. Kemerer. The illusory
diffusion of innovation: An examination of assimilation
gaps. Inf. Systems Research, 10(3):255–275, 1999.

5. L. Findlater and J. McGrenere. Evaluating
reduced-functionality interfaces according to feature
findability and awareness. In INTERACT ’07, pages
592–605, 2007.

6. T. Grossman, G. Fitzmaurice, and R. Attar. A survey of
software learnability: metrics, methodologies and
guidelines. In SIGCHI ’09, pages 649–658, 2009.

7. J. Iivari. Why are CASE tools not used?
Communications of the ACM, 39(10):94–103, 1996.

8. J. Lave and E. Wenger. Situated Learning: Legitimate
Peripheral Participation. Cambridge University Press,
1st edition, September 1991.

9. F. Linton, D. Joy, H. Schaefer, and A. Charron. OWL:
A recommender system for organization-wide learning.
Educational Technology & Soc., 3(1):62–76, 2000.

10. C. Maltzahn. Community help: discovering tools and
locating experts in a dynamic environment. In SIGCHI
’95, pages 260–261, New York, NY, USA, 1995. ACM.

11. V. J. Marsick and K. E. Watkins. Informal and
incidental learning. New Directions for Adult and
Continuing Education, 2001(89):25–34, 2001.

12. J. Matejka, W. Li, T. Grossman, and G. Fitzmaurice.
CommunityCommands: command recommendations
for software applications. In UIST ’09, pages 193–202,
2009.

13. J. McGrenere. The Design and Evaluation of Multiple
Interfaces: A Solution for Complex Software. PhD
thesis, The University of Toronto, 2002.

14. M. M. Müller and W. F. Tichy. Case study: Extreme
programming in a university environment. In ICSE ’01,
pages 537–544, 2001.

15. J. Rieman. A field study of exploratory learning
strategies. ACM TOCHI, 3(3):189–218, 1996.

16. E. M. Rogers. Diffusion of Innovations. Free Press, 5th
edition, 2003.

17. M. B. Twidale. Over the shoulder learning: Supporting
brief informal learning. CSCW, 14(6):505–547, 2005.

10

	Introduction
	Terminology
	A Study of PEER INTERACTION
	Methodology
	Subjects
	Results
	The Steps of Peer Observation
	The Steps of Peer Recommendation
	Frequency of Peer Interaction
	Effectiveness of Discovery Modes
	Barriers to Peer Interaction
	Flow of Peer Interaction
	A Remote Pair Programming Vignette

	Threats to Validity

	Implications
	Improving Tool Discoverability
	Peer Interaction without Collocation

	Related Work
	Diffusion of Innovations
	Learning in Context
	Learning During Programming

	Conclusion
	REFERENCES

