Selected Publications

Click here for full list.
Note: asterisk indicates shared first authorship.

Carrell et al., 2017

A signaling gradient goes against the grain: diffusion causes accumulation instead of spreading.

Carrell, S. N.*; O'Connell M. D.*; Jacobsen, T.; Pomeroy, A. E.; Hayes, S. M. & Reeves, G. T. (2017). A facilitated diffusion mechanism establishes the Drosophila Dorsal gradient. Development, online in advance of print. doi: 10.1242/dev.155549

Jermusyk et al., 2016

A synthetic negative feedback loop has unexpected consequences.

Jermusyk A. A.; Murphy, N. P. & Reeves, G. T. (2016). Analyzing negative feedback using a synthetic gene network expressed in the Drosophila melanogaster embryo. BMC Syst Biol, 10: 85. doi: 10.1186/s12918-016-0330-z

Jermusyk and Reeves, 2016

Transcription factor networks show similar global properties to man-made networks.

Jermusyk A. & Reeves, G. T. (2016). Transcription Factor Networks. Encyclopedia of Cell Biology, 4: 63-71. doi: 10.1016/B978-0-12-394447-4.40010-6

O'Connell and Reeves, 2015

Computational modeling of the Dorsal gradient suggests that Dorsal/Cactus complex is present in the nucleus.

O'Connell, M. D. & Reeves, G. T. (2015). The presence of nuclear Cactus in the early Drosophila embryo may extend the dynamic range of the Dorsal gradient. PLoS Comput Biol, 11: e1004159. doi: 10.1371/journal.pcbi.1004159

Carrell and Reeves, 2015

Methods to mount and image cross sections of Drosophila embryos.

Carrell, S. N. & Reeves, G. T. (2015). Imaging the Dorsal-Ventral Axis of Live and Fixed Drosophila melanogaster Embryos. Methods Mol Biol, 1189: 63-78. doi: 10.1007/978-1-4939-1164-6_5

Reeves et al., 2012

Live imaging of the Dorsal gradient found it to be highly dynamic.

Reeves, G. T.*; Trisnadi, N.*; Truong, T. V.; Nahmad, M.; Katz, S. & Stathopoulos, A. (2012). Dorsal-Ventral Gene Expression in the Drosophila Embryo Reflects the Dynamics and Precision of the Dorsal Nuclear Gradient. Dev Cell, 22: 544-557. doi: 10.1016/j.devcel.2011.12.007

Liberman et al., 2009

Detailed, quantitative measurements of the Dorsal gradient found it to be surprisingly narrow.

Liberman, L. M.*; Reeves, G.T.* & Stathopoulos, A. (2009). Quantitative imaging of the Dorsal nuclear gradient reveals limitations to threshold-dependent patterning in Drosophila. Proc Natl Acad Sci U S A, 106: 22317-22322. doi: 10.1073/pnas.0906227106.

Reeves and Stahopoulos, 2009

The Dorsal gradient divides the embryo into roughly three domains.

Reeves, G.T. & Stathopoulos, A. (2009). Cold Spring Harb Perspect Biol, "Perspectives on Generation and Interpretation of Morphogen Gradients." doi: 10.1101/cshperspect.a000836.

Reeves and Fraser, 2009

Biological systems studied from an engineer's point of view.

Reeves, G.T. & Fraser, S.E. (2009). Biological systems from an engineer's point of view. PLoS Biol 7: e21. doi: 10.1371/journal.pbio.1000021.

Reeves et al., 2005

Negative feedback on morphogen gradients adds robustness to the system.

Reeves, G.T.; Kalifa, R.; Klein, D.E.; Lemmon, M.A. & Shvartsman, S.Y. (2005). Computational analysis of EGFR inhibition by Argos. Dev. Biol., 284: 523-535.

Click here for full list of publications.