Note: asterisk indicates shared first authorship.


  • Carrell, S. N.*; O'Connell M. D.*; Jacobsen, T.; Pomeroy, A. E.; Hayes, S. M. & Reeves, G. T. (2017). A facilitated diffusion mechanism establishes the Drosophila Dorsal gradient. Development, 144: 4450-4461. doi: 10.1242/dev.155549
  • Hrischuk, C. E. & Reeves, G. T. (2017). The Cell Embodies Standard Engineering Principles. J Bioinf Com Sys Biol, 1: 106. Note: Appendix can be found here.
  • 2016

  • Jermusyk A.; Murphy, N. P. & Reeves, G. T. (2016). Analyzing negative feedback using a synthetic gene network expressed in the Drosophila melanogaster embryo. BMC Systems Biology, 10: 85. doi: 10.1186/s12918-016-0330-z
  • Reeves, G. T. & Hrischuk, C. E. (2016). Survey of Engineering Models for Systems Biology. Computational Biology Journal, 2016: 1-12. doi: 10.1155/2016/4106329
  • Jermusyk A. & Reeves, G. T. (2016). Transcription Factor Networks. Encyclopedia of Cell Biology, 4: 63-71. doi: 10.1016/B978-0-12-394447-4.40010-6


  • O'Connell, M. D. & Reeves, G. T. (2015). The presence of nuclear Cactus in the early Drosophila embryo may extend the dynamic range of the Dorsal gradient. PLoS Comput Biol, 11: e1004159. doi: 10.1371/journal.pcbi.1004159
  • Carrell, S. N. & Reeves, G. T. (2015). Imaging the Dorsal-Ventral Axis of Live and Fixed Drosophila melanogaster Embryos. Methods Mol Biol, 1189: 63-78. doi: 10.1007/978-1-4939-1164-6_5


  • Garcia, M.; Nahmad, M.; Reeves, G. T. & Stathopoulos, A. (2013). Size-dependent regulation of dorsal-ventral patterning in the early Drosophila embryo. Developmental Biology, 381: 286-299. doi: 10.1016/j.ydbio.2013.06.020
  • Trisnadi, N.; Altinok, A.; Stathopoulos, A. & Reeves, G. T. (2012). Image analysis and empirical modeling of gene and protein expression. Methods, 62: 68-78. doi: 10.1016/j.ymeth.2012.09.016


  • Reeves, G. T.*; Trisnadi, N.*; Truong, T. V.; Nahmad, M.; Katz, S. & Stathopoulos, A. (2012). Dorsal-Ventral Gene Expression in the Drosophila Embryo Reflects the Dynamics and Precision of the Dorsal Nuclear Gradient. Dev Cell, 22: 544-557. doi: 10.1016/j.devcel.2011.12.007


  • McMahon, A.; Reeves, G. T.; Supatto, W. & Stathopoulos, A. (2010). Mesoderm migration in Drosophila is a multi-step process requiring FGF signaling and integrin activity. Development, 137: 2167-2175. doi: 10.1242/dev.051573.


  • Liberman, L. M.*; Reeves, G.T.* & Stathopoulos, A. (2009). Quantitative imaging of the Dorsal nuclear gradient reveals limitations to threshold-dependent patterning in Drosophila. Proc Natl Acad Sci U S A, 106: 22317-22322. doi: 10.1073/pnas.0906227106.
  • Reeves, G.T. & Stathopoulos, A. (2009). Cold Spring Harb Perspect Biol, "Perspectives on Generation and Interpretation of Morphogen Gradients." doi: 10.1101/cshperspect.a000836.
  • Reeves, G.T. & Fraser, S.E. (2009). Biological systems from an engineer's point of view. PLoS Biol 7: e21. doi: 10.1371/journal.pbio.1000021.


  • Reeves, G.T.; Muratov, C.B.; Schüpbach, T. & Shvartsman, S.Y. (2006). Quantitative models of developmental pattern formation. Dev. Cell, 11: 289-300.
  • Goentoro, L.A.; Reeves, G.T.; Kowal, C.P.; Martinelli, L.; Schüpbach, T. & Shvartsman, S.Y. (2006). Quantifying the Gurken morphogen gradient in Drosophila oogenesis. Dev. Cell, 11: 263-272.


  • Reeves, G.T.; Kalifa, R.; Klein, D.E.; Lemmon, M.A. & Shvartsman, S.Y. (2005). Computational analysis of EGFR inhibition by Argos. Dev. Biol., 284: 523-535.


  • Pilyugin, S.S.; Reeves, G.T. & Narang, A. (2004). Predicting stability of mixed microbial cultures from single species experiments: 1. Phenomenological model. Math Biosci., 192: 85-109.
  • Pilyugin, S.S.; Reeves, G.T. & Narang, A. (2004). Predicting stability of mixed microbial cultures from single species experiments: 2. Physiological model. Math Biosci., 192: 111-136.
  • Klein, D.E.; Nappi, V.M.; Reeves, G.T.; Shvartsman, S.Y. & Lemmon, M.A. (2004). Argos inhibits Epidermal Growth Factor Receptor signaling by ligand sequestration. Nature, 430: 1040-1044.
  • Reeves, G.T.; Narang, A. & Pilyugin, S.S. (2004). Growth of mixed cultures on mixtures of substitutable substrates: the operating diagram for a structured model. J. Theor. Biol., 226: 143-157.


  • Shoemaker, J.; Reeves, G.T.; Gupta, S.; Pilyugin, S.S.; Egli, T. & Narang, A. (2003). The dynamics of single-substrate continuous cultures: the role of transport enzymes. J. Theor. Biol., 222: 307-322.

Transcription factor networks show similar global properties to man-made networks. Figure modified from Jermusyk and Reeves, 2016.

Computational modeling of the Dorsal gradient suggests that Dorsal/Cactus complex is present in the nucleus. Figure modified from O'Connell and Reeves, 2015.

Live imaging of the Dorsal gradient found it to be highly dynamic. Figure modified from Reeves et al., 2012.

Detailed, quantitative measurements of the Dorsal gradient found it to be surprisingly narrow. Figure modified from Liberman et al., 2009.

The Dorsal gradient divides the embryo into roughly three domains. Figure modified from Reeves and Stathopoulos, 2009.