
 

1 
 

The Demand for a Sound Baseline in GPU Memory 

Architecture Research 
Hongwen Dai, Chao Li, Zhen Lin, Huiyang Zhou 

North Carolina State University 

Raleigh, NC 

{hdai3, cli17, zlin4, hzhou}@ncsu.edu 
 

Abstract-Modern GPUs adopt massive multithreading and 

multi -level cache hierarchies to hide long operation latencies, 

especially off-chip memory access latencies. However, poor 

cache indexing and cache line allocation policy as well as a small 

number of miss-status handling registers (MSHRs) can 

exacerbate the problem of cache thrashing and cache-miss-

related resource congestion. Besides, modulo address mapping 

among memory partitions may cause severe partition camping, 

resulting in underutilization of DRAM bandwidth and capacity 

of banked L2 cache. Furthermore, prior GPU cache bypassing 

studies unrealistically assume there is no limit on the number 

of in-flight bypassed requests, which may lead to pathological 

experimental results in simulation. 

In this work, we investigate the performance impact of the 

aforementioned factors and demonstrate the necessity for a 

sound baseline in GPU memory architecture research. Our 

results show that advanced cache indexing functions can 

greatly reduce conflict misses and improve cache efficiency; the 

allocation-on-fill policy brings a better performance than 

allocation-on-miss. Besides, the performance does not 

consistently improve with more MSHRs. Instead, there can be 

performance degradation in certain scenarios. In addition, Xor 

mapping can greatly mitigate the problem of memory partition 

camping. Furthermore, the fact that a limited number of in-

flight bypassed requests can be supported should be taken into 

account in GPU cache bypassing studies, for more reliable 

results and conclusions. 

I.  INTRODUCTION 

General purpose computation on graphics processing units 

(GPGPU) has become prevalent in high performance 

computing. Modern GPUs consist of multiple Streaming 

Multiprocessors (SMs), each of which containing 32 to 192 

CUDA cores and 2 to 4 warp schedulers [20][21][22][24]. A 

GPU kernel is launched with a grid of thread blocks (TBs). 

Threads within a TB form multiple warps and all threads in 

a warp execute in a lock step manner. 

Besides massive multithreading, GPUs have adopted 

multi-level cache hierarchies to mitigate long off-chip 

memory access latencies. However, cache thrashing is 

severe on GPUs due to the small cache capacity per thread 

and the short cache-line lifetime. Moreover, since miss status 

handling registers (MSHRs) and miss queue entries need to 

be allocated for outstanding misses, massive multithreading 

also causes significant memory pipeline stalls when such 

resources are fully occupied. Simply enlarging cache 

capacity and/or adding more cache-miss-related resources is 

costly in terms of area and power. Therefore, there have been 

significant research works on GPU memory architecture. In 

this work, we highlight several often-overlooked aspects of 

GPU cache design as well as request distribution among 

memory partitions and demonstrate the necessity for a sound 

baseline in GPU memory architecture research. 

First, although cache indexing methods have been well 

studied to reduce conflict misses in CPUs [6][11][16], no 

prior works have thoroughly studied the performance impact 

of various advanced cache indexing functions on GPUs. 

Second, for a request sent to the L1 D-cache, if it is a hit, 

the required data is returned immediately; if it is a miss, 

cache-miss-related resources are allocated and the request is 

forwarded to the L2 cache. Allocate-on-miss and allocate-

on-fill are two cache line allocation policies. With allocate-

on-miss, a cache line slot, a MSHR, and a miss queue entry 

need to be allocated for an outstanding miss. In contrast, with 

allocate-on-fill, a MSHR and a miss queue entry need to be 

allocated when an outstanding miss occurs but the victim 

cache line slot is chosen when the required data has returned 

from lower memory levels. In both policies, if any of the 

required resources is not available, a reservation failure 

occurs and the memory pipeline is stalled. The allocated 

MSHR is reserved until the data is fetched from the L2 

cache/off-chip memory while the miss queue entry is 

released once the miss request is forwarded to the L2 cache. 

Since allocate-on-fill preserves the victim cache line longer 

in the cache before eviction and reserves fewer resources for 

an outstanding miss, it tends to enjoy more cache hits and 

fewer reservation failures, and in turn better performance 

than allocate-on-miss. Although allocate-on-fill requires 

extra buffering and flow-control logic to fill data to the cache 

in-order, the in-order execution model and the write-evict 

policy make the GPU L1 D-cache friendly to allocate-on-fill 

as there is no dirty data to write to L2 when a victim cache 

is to be evicted at the fill time. Therefore, it is intriguing to 

investigate how well allocate-on-fill performs for GPGPU 

applications and whether it is cost-effective. 

Third, since the allocated MSHRs are reserved until the 

required data come back from lower memory levels, it is 

intuitive to boost performance by deploying more MSHRs 

to reduce reservation failures and thus memory pipeline 

stalls, and in the meanwhile increase memory-level-

parallelism (MLP). However, more MSHRs may lead to 

more warps scheduled to access the L1 D-cache in a short 

interval and increase the possibility of cache thrashing. So it 
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is useful if we can better understand the performance impact 

of the MSHR size. 

Fourth, the memory partition mapping function plays a 

critical role in distributing requests among multiple memory 

partitions. Although the Modulo address mapping is simple 

to implement and effective for some applications, it may 

result in severe memory partition camping and requests are 

disproportionately handled by one or a small subset of 

memory partitions on a GPU, leading to the underutilization 

of DRAM bandwidth and capacity of banked L2 cache. 

Therefore, it is important to check how memory request 

distribution among partitions as well as performance will be 

affected if a different address mapping function is adopted. 

Fifth, prior works [3][5][8][13][14][32] on GPU cache 

bypassing assume there are always adequate hardware 

resources to store the relevant information of bypassed 

requests and thus unlimited number of in-flight bypassed 

requests can be supported. However, such an assumption is 

overly optimistic in practice.  

MRPB [8] is one of the pioneering works on GPU cache 

management, inspiring research works on GPU cache 

bypassing [5][13][14][32] and mitigation of memory 

pipeline stalls [27][31]. In this work, we investigate how it 

performs with an altered cache indexing function, cache line 

allocation policy, MSHR size and memory partition 

mapping functions. Besides MRPB, we also examine the 

effectiveness of the GPU cache bypassing scheme MDB[5] 

with the constraint that only a finite number of in-flight 

bypassed requests can be supported. Overall, we justify the 

necessity for a sound baseline in GPU memory architecture 

research. 

Overall, this paper makes the following contributions: 

¶ We show that cache indexing functions have 
remarkable impact on the overall performance and 
allocate-on-fill brings significantly higher performance 
for GPGPU applications, than allocate-on-miss; 

¶ We demonstrate that while more MSHRs can provide a 
higher MLP, performance is not necessarily improved 
due to the impact on L1 D-cache performance; 

¶ We present that a well-performing memory partition 
mapping function should be adopted for more balanced 
request distribution among memory partitions; 

¶ We illustrate that the effectiveness of prior schemes is 
reduced with the enhanced baseline and the limitation 
on the number of in-flight bypassed requests imposes 
non-trivial impact on GPU cache bypassing schemes. 

II.  BACKGROUND 

As shown in Figure 1, multiple warp schedulers can reside 

in each SM of a GPU and each scheduler supervises multiple 

warps. And in each SM, there are on-chip memory resources 

including a L1 read-only texture cache, a L1 read-only 

constant cache, a L1 data cache (D-cache), and shared 

memory. A unified L2 cache is shared among multiple SMs. 

Typically, the L1 D-cache uses the write-evict with either 

write-allocate [1] or write-no-allocate [20][22] policies, and 

the L2 cache uses the write-back write-allocate policy to 

save NoC and DRAM bandwidth [28]. Moreover, requests 

sent to the lower level memory hierarchy (L2 cache and 

DRAM) are distributed among memory partitions based on 

address mapping function. 

On GPUs, global and local memory requests from threads 

in a warp are coalesced into as few transactions as possible 

before being sent to the memory hierarchy. The cached or 

bypassed information is typically encoded in instruction 

opcodes [23], indicating whether a request is sent to the L1 

D-cache through the ‘L1D path’ or directly to the L2 cache 

through the ‘Bypass Path’, as shown in Figure 1.  

For a request sent to the L1 D-cache, the cache indexing 

function is applied to determine which set to search for the 

required data and to insert/evict a cache line if it is a miss. 

Thus, the cache indexing function is crucial to balance 

requests among cache sets. 

Then, for a cache miss, the cache-miss-related resources 

are allocated before sending the miss request to the L2 cache. 

For allocate-on-miss, the allocated resources include a cache 

line slot, a MSHR and a miss queue entry while for allocate-

on-fill, just a MSHR and a miss queue entry are allocated. If 

any of the required resources is not available, a reservation 

failure occurs and the memory pipeline is stalled. Since a 

MSHR entry is reserved until the data is fetched from lower 

memory levels, the MSHR size determines how many in-

Figure 1. Baseline GPU. 
 Table 1. Baseline architecture configuration 

# of SMs 16, SIMD width=32, 1.4GHz 

Per-SM warp schedulers 4 Greedy-Then-Oldest schedulers 

Per-SM limit 
3072 threads, 96 warps,  thread blocks, 

64 MSHRs 

Per-SM L1D-cache 16KB, 128B line, 4-way associativity 

Per-SM shared memory 96KB, 32 banks 

Unified L2 cache 
2048 KB, 128KB/partition, 128B line, 

16-way associativity, 128 MSHRs 

L1D/L2 policies 
alloc-on-miss, LRU, 

L1D:WEWN,  L2: WBWA 

Interconnect 16*16 crossbar, 32B flit size, 1.4GHz 

DRAM 
16 memory partitions, Modulo 

mapping, FR-FCFS scheduler, 924MHz 
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flight outstanding misses can be supported, i.e., the upper 

bound of memory-level parallelism. 

Although a request sent to the L1 D-cache enjoys low 

access latency if it hits in the L1 D-cache, the massive 

requests on GPUs easily cause cache thrashing and cache-

miss-related resource congestion, degrading the overall 

performance. GPU cache bypassing has been proposed to 

effectively mitigate these problems. And similar to the fact 

that MSHRs are used to record relevant information of 

outstanding misses, some hardware structure should be 

deployed to store information for bypassed requests, such as 

which threads in which warp ask for the data as well as the 

destination register. 

III.  EXPERIMENTAL METHODOLOGY 

Simulation Environment:  we use GPGPUsim V3.2.2 [2], a 

cycle-accurate GPU microarchitecture simulator, to evaluate 

various design choices. Table 1 shows the baseline Maxwell-

like [21] configuration that has been widely used in GPU 

architecture studies. Benchmarks: we evaluate two entire 

benchmark suites, Rodinia [4] and Polybench [7], including 

both regular and irregular applications. 

Before we start our investigation, we first examine the 

impact of cache by checking the performance from a small 

16KB 4-way set-associative L1 D-cache and a large 512KB 

full-associative L1 D-cache. Based on the performance 

improvement from the 512KB L1 D-cache, we classify 

benchmarks with more than 50% improvement as High 

Cache Contention (HCC) and others as Low Cache 

Contention (LCC). Our study focuses on HCC benchmarks 

as the is not much variance for LCC ones, the same as prior 

GPU memory architecture studies [3][5][8][14][26][30]. 

All HCC benchmarks are shown in Table 2 and Figure 2, 

where performances are normalized to that from the 16KB 

L1 D-cache and the average performance from the 512 KB 

L1 D-cache is 4.09x. The significant performance 

improvement indicates it is crucial to optimize memory 

architecture for high performance. 

IV.  GPU CACHE INDEXING 

In this section, we illustrate the performance impact of cache 

indexing functions and show that a well performing cache 

indexing function should be deployed in the first place. 

A. Performance impact  

With limited cache capacity per thread, GPU caches suffer 

from severe capacity contention. Furthermore, the capacity 

may not be well utilized due to a large number of conflict 

misses, which are resulted from column-majored stride 

accesses in a warp of threads and thus a high number of un-

coalesced requests [30]. Besides, it has been observed that 

the baseline-Modulo mapping used by default in GPGPUsim 

may cause pathological performance results [12][14]. 

Hereby, we thoroughly study the impact of several advanced 

cache indexing functions to identify the simple and effective 

one to mitigate conflict misses for GPGPU applications. 

Figure 3 shows performance from different GPU cache 

indexing functions used upon a 16KB L1 D-cache, including 

BMOD (Baseline Modulo), BXOR (Bitwise XOR[6]), 

PMOD (Prime Modulo[11]), A_Prime (Another Prime 

 
Figure 2. HCC (High Cache Contention) benchmarks 

from Polybench and Rodinia. 
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Table 2. Benchmarks 
Abbreviation (Description) Type Source 

BIC (BiCGStab linear solver subkernel) HCC [7] 

MVT (Matrix-vector-product and transpose) HCC [7] 

ATX (Matrix-transpose-vector  multiply) HCC [7] 

GMV (Scalar-vector-matrix multiply) HCC [7] 

SRK (Symmetric rank-2k operations) HCC [7] 

S2K (Symmetric rank-2k operations) HCC [7] 

STC (StreamCluster) HCC [4] 

SRD2 (Srad_v2) HCC [4] 

PTL (Particle Filter) HCC [4] 

KMS (K-means clustering) HCC [4] 

 

 
Figure 3. Performance impact of cache indexing functions 

with baseline cache management. 
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Figure 4. Performance improvement from MRPB with 

cache indexing functions BMOD and BXOR. 
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Modulo[16]), D_Prime (Prime Displacement[11]) and I-

Poly (Irreducible Polynomial[25]). First, despite the 

variations, there are significant performance improvements 

from advanced cache indexing functions, and it is 1.58x, 

1.95x, 1.88x, 1.75x and 2.04x for BXOR, PMOD, A_Prime, 

D_Prime and I_poly, respectively. While other cache 

indexing functions either lose their effectiveness in certain 

cases (like D_prime for S2K and STC) or require more 

complex computation (like I-poly) which may add latency 

onto the critical path, BXOR is effective and simple to 

implement. Therefore, BXOR is a good choice for cache set 

indexing for GPUs, matching the finding in the work [17], 

which identified that BXOR is used to map addresses to 

cache sets on GPUs, through micro-benchmarking. 

B. Effectiveness of MRPB with different cache indexings 

On GPU cache management, Jia et al. proposed MRPB [8] 

which deploys memory request prioritization buffers to 

reduce the effective working set and bypasses L1 D-cache 

when a request encounters a reservation failure. It is shown 

that MRPB significantly improves the performance of HCC 

benchmarks but it does not mention how cache sets are 

indexed in their experiments. Thus, it remains interesting to 

check the effectiveness of MRPB under BMOD and BXOR. 

As shown in Figure 4, MRPB significantly improves the 

performance of HCC benchmarks when BMOD is used, 

matching the experimental results in the work [8]. However, 

the performance improvement of MRPB over the baseline is 

greatly reduced when BXOR is adopted. On average, the 

normalized performance over the baseline drops from 4.35x 

with BMOD to 2.32x with BXOR, respectively, confirming 

that pathological result may occur when BMOD is used. 

Given the remarkable impact of cache indexing on HCC 

applications, we believe that a well-performing cache 

indexing function should be deployed in the first place and 

BXOR is good to use in terms of cost-effectiveness. Please 

note: BOXR cache indexing is used in the following 

discussion. 

V.  CACHE LINE ALLOCATION  

In this section, we dissect the performance impact of the two 

cache line allocation policies, namely allocate-on-miss and 

allocate-on-fill. 

A. Performance impact  

As described in Section I, when there is an outstanding miss, 

allocate-on-miss allocates a cache line in addition to a 

MSHR and a miss queue entry while allocate-on-fill just 

allocates a MSHR and a miss queue entry. Allocation-on-fill 

brings in two performance benefits. First, since allocate-on-

fill does not evict the victim cache line until the requested 

data come back from L2 cache/off-chip memory, cache lines 

have longer lifetime to capture temporal reuses. This is 

particularly the case for GPUs as the L2 cache latency is 

much higher than that of CPU L2 caches since multiple SMs 

share the L2 cache on a GPU. Besides, the in-order execution 

model and the write-evict policy make the GPU L1 D-cache 

friendly to allocate-on-fill as there is no dirty data to write to 

L2 when a victim cache line is to be evicted at the fill time. 

Furthermore, as allocate-on-fill does not reserve a cache line 

slot, cache-miss-related resource congestion is lighter. 

Figure 5 shows a MSHR entry on GPUs. The basic 

structure is similar to the simple organization proposed by 

 
Figure 5. A MSHR Entry on GPUs. 

   

  
             (a)                 (b) 

Figure 7. Effectiveness of MRPB with varied cache line 

allocation policies: (a) normalized IPC; (b) performance 

improvement over the baseline cache management.  
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                       (a)                    (b)       (c)          (d) 

Figure 6. Performance impact of cache line allocation policy with baseline cache management: (a)16KB L1 D-cache: 

normalized IPC; (b) normalized IPC; (c) L1 D-cache miss rate; (d) L1 D-cache rsfail rate (reservation failures per access). 
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Tuck et al [29]. The fields of a single MSHR entry include 

valid bit, block address, control/status bits (prefetch, which 

subblocks have arrived, etc.). Due to the nature of gather 

operation on GPUs, thread mapping in subentries tracks 

which words in the requested cache line map to which 

threads, as described in WarpPool [10]. 

Figure 6(b) shows the performance of allocate-on-miss 

and allocate-on-fill on various cache capacities, normalized 

to that of a 16KB L1 D-cache with allocate-on-miss. 

Individual kernels’ performances are also shown for cache 

capacity 16KB, in Figure 6(a). As demonstrated, allocate-

on-fill consistently outperforms allocate-on-miss. On 

average, the performance from allocate-on-fill (allocate-on-

miss) is 1.4x(1.0x), 3.1x(5.2x) and 8.1x(10.7x) with a 16KB, 

32KB and 64KB L1 D-cache, respectively. 

As discussed, the better performance of allocate-on-fill 

comes from a higher L1 D-cache efficiency and relieved 

cache-miss-related resource congestion. Figure 6 (c) and (d) 

show L1 D-cache miss rate and L1 D-cache rsfail rate 

(reservation failures per access), respectively. And take a 

32KB L1 D-cache as the example, the L1 D-cache miss rate 

(rsfail rate) is reduced from 0.48(7.5) with allocate-on-miss 

to 0.33(2.9) with allocate-on-fill. 

B. Effectiveness of MRPB with different cache line 

allocation policies 

Given the significant performance impact of cache line 

allocation policies, we also check the effectiveness of MRPB 

when varying this factor. As shown in Figure 7(a), where 

performances are normalized to that from the baseline cache 

management on a 16KB L1 D-cache with allocate-on-miss, 

allocate-on-fill also benefits MRPB with fewer misses and 

reservation failures, outperforming allocate-on-miss. For 

example, on a 32KB L1 D-cache, the performance increases 

from 6.4x with allocate-on-miss to 7.2x with allocate-on-fill. 

However, as the performance is already boosted for the 

baseline cache management with allocate-on-fill, generally 

the effectiveness of MRPB is reduced. For instance, the 

performance improvement from MRPB over the baseline on 

a 32KB L1 D-cache is 110% with allocate-on-miss and it is 

reduced to 40% with allocate-on-fill, shown in Figure 7(b). 

To summarize, considering the non-trivial performance 

impact, we argue that allocate-on-fill should be examined in 

the evaluation of GPU cache management schemes. 

VI.  MSHR SIZES 

In this section, we study the impact of MSHR size. Since a 

MSHR entry is reserved until the required data is returned 

from lower memory hierarchies, the number of MSHRs 

determines the number of outstanding misses which can be 

served in parallel, i.e., the upper bound of MLP. Besides, a 

scheduled warp will be stalled in the memory pipeline if all 

MSHRs are reserved by previous outstanding misses and 

thus TLP may be reduced with a small number of MSHRs. 

A. Performance impact 

First, we show that the MSHR size has a high impact on the 

overall performance. Figure 8(a) shows the average 

performance with different MSHR sizes, namely 32, 64, 128 

and 256 MSHRs and when the optimal MSHR size is applied 

to each benchmark, indicated by ‘Optimal’. First, while the 

average performance increases with more MSHRs in most 

scenarios, an up-then-down performance trend shows up on 

a 64KB L1 D-cache with allocate-on-miss, indicating more 

MSHRs do not necessarily bring a better performance, 

confirming the observations in the work [31]. Second, the 

best performing MSHR size varies for different benchmarks 

and no single MSHR size can hold the advantage 

consistently. Thus the ‘Optimal’ performance can be much 

better than that from any fixed MSHR size. For example, the 

normalized IPC of ‘Optimal’ is 8.94x (12.54x) while the best 

performance among the fixed MSHR sizes is 8.11x (11.0x) 

from 64MSHR (256MSHR) for allocate-on-miss (allocate-

on-fill) with a 64KB L1 D-cache. Fourth, as shown, allocate-

on-fill is more immune to the potential adverse effect of 

more MSHRs and thus consistently obtains a better 

performance with more MSHRs, on average. 

B. The impact of MSHR sizes on L1 D-cache performance 

To further investigate the impact of MSHR size, we use 

KMS as a case study to demonstrate that more MSHRs may 

hurt the overall performance. 

 

   
(a)                (b)           (c)    (d) 

Figure 8. Performance impact of MSHR size: (a) average normalized IPC; (b) KMS: normalized IPC; (c) KMS: L1 D-

cache miss rate; (d) KMS: L1 D-cache rsfail rate (reservation failures per access). 
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Figure 8(b) presents the performance for KMS from 

different MSHR sizes, normalized to the performance form 

a 16 L1 D-cache with allocate-on-miss and 64 MSHRs. For 

a small 16KB L1 D-cache, where the miss rate remains low, 

more MSHRs lead to relieved cache-miss-related resource 

congestion and increased MLP (memory level parallelism), 

resulting in a better performance. However, for a larger 

cache, especially, 64KB L1 D-cache, the performance first 

increases and then decreases with more MSHRs. 

Specifically, under allocate-on-miss, the performance 

increases from 5.9x with 32MSHR to 7.3x with 64MSHR 

because the miss rate remains low (around 0.065) and the 

number of reservation failures is reduced. Then the 

performance drops to 2.8x with 128MSHR and to 1.2 with 

256MSHR, because both the miss rate and the number of 

reservation failures significantly increase. And the same 

variation can also be observed for allocate-on-fill. 

To further figure out why the miss rate increases with 

more MSHRs, we looked into the cycle-by-cycle L1 D-

cache accesses and found that due to the multithreading 

execution model of GPUs, in which a new warp will be 

scheduled if the current one is waiting for results of its 

previous instructions, when there are more MSHRs, more 

warps are actively scheduled to access L1 D-cache, causing 

cache thrashing; on the other hand, when there are fewer 

MSHRs, fewer warps can allocate a MSHR for their cache 

misses and when a request is fulfilled and a reserved MSHR 

is released, based on the warp scheduling policy, it is highly 

possible that one of the previously scheduled warps can be 

scheduled to issue a memory request again and thus has a 

bigger chance to get a hit in the cache. 

To summarize, on GPUs, although more MSHRs can 

bring a higher MLP, they also enable more requests into 

caches in a short interval and increase the probability of 

cache thrashing, confirming the finding in works [17][31] 

that fewer MSHRs yield better cache behavior for some 

benchmarks. Nevertheless, since 128 MSHRs can bring a 

good performance on average, we suggest using 128 MSHRs 

in the configuration, considering the cost-effectiveness.   

C. Effectiveness of MRPB with the optimal MSHR size 

Given the significant performance impact of MSHRs, we 

also check the effectiveness of MRPB when the optimal 

MSHR size is applied for each benchmark. 

 On one hand, the performance of MRPB is further 

improved with the optimal MSHR size, as shown in Figure 

9 (a). For instance, the average performance from MRPB is 

6.4x (7.2x) on a 32KB L1 D-cache under allocate-on-miss 

(allocate-on-fill) with 64MSHR (Figure 7(a)) and it is 

improved to 7.3x (8.1x) when the optimal MSHR size is 

applied for each benchmark. On the other hand, the 

performance improvements from MRPB may decrease when 

the optimal MSHR size is applied to it and the baseline cache 

management. For example, while the improvement from 

 
             (a)                 (b) 

Figure 11. Effectiveness of MRPB with Modulo and Xor 

memory partition mapping: (a) normalized IPC; (b) 

improvement over the baseline cache management.  

 

0
2
4
6
8

10
12
14
16
18

o
n

-m
is

s

o
n

-f
ill

o
n

-m
is

s

o
n

-f
ill

o
n

-m
is

s

o
n

-f
ill

16KB 32KB 64KB

N
o
rm

a
liz

e
d
 I

P
C

Modulo Xor

0.0

0.5

1.0

1.5

2.0

o
n

-m
is

s

o
n

-f
ill

o
n

-m
is

s

o
n

-f
ill

o
n

-m
is

s

o
n

-f
ill

16KB 32KB 64KB

N
o
rm

a
liz

e
d
 I

P
C

Modulo Xor

  
(a)                           (b)                          (c)                           (d) 

Figure 10. Performance impact of memory partition mapping: (a) average normalized IPC; (b) SRK: percentage of 

requests across 16 memory partitions; (c) SRK: L2 cache miss rate; (d) L1 D-cache rsfail rate (reservation failures per access). 
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             (a)                 (b) 

Figure 9. Effectiveness of MRPB with the optimal MSHR 

size: (a) normalized IPC; (b) performance improvement 

over the baseline cache management.  
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MRPB over the baseline cache management is 40% on a 

32KB L1 D-cache with 64 MSHRs and allocate-on-fill, it is 

reduced to 20% when considering the optimal performance. 

VII. REQUEST DISTRIBUTION AMONG MEMORY PARTITIONS  

In this section, we investigate the impact of memory request 

distribution among partitions. By default, addresses are 

linearly distributed among memory channels/partitions 

(Modulo mapping), in GPGPUsim. However, with Modulo 

mapping, column-majored stride accesses may cause severe 

partition camping and requests are disproportionately 

handled by a small subset of memory partitions on a GPU, 

leading to performance degradation. In the meanwhile, Xor 

mapping is simple to implement and can overcome the 

problems with Modulo mapping. 

Figure 10 demonstrates the impact from the two memory 

partition mapping functions. Figure 10(a) shows that on 

average, Xor mapping consistently outperforms Modulo 

mapping. For example, the normalized IPC is 3.1x (6.0x) for 

Modulo mapping and 5.1x (9.6x) for Xor mapping on a 

32KB L1 D-cache with allocate-on-miss (allocate-on-fill). 

To further investigate how Xor mapping outperforms 

Modulo mapping, we use the benchmark SRK for case study 

and examine memory request distribution among partitions, 

L2 cache efficiency and L1 D-cache miss-related resources 

congestion. First, Figure 10(b) shows that a majority of 

requests are mapped to memory partition 0 with Modulo 

mapping, leading to extremely low DRAM bandwidth 

utilization. And Xor mapping overcomes the problem of 

memory partition camping by evenly distributing requests 

among all 16 partitions. The more balanced memory request 

distribution not only greatly improves DRAM bandwidth 

utilization, but also improves L2 cache efficiency. As shown 

in Figure 10(c), L2 cache miss rate significantly decreases 

with Xor mapping, due to more balanced accesses to L2 

banks and thus better L2 capacity utilization. Furthermore, 

the improved efficiency/performance at the lower level 

memory hierarchy also benefits L1 D-cache accesses. Figure 

10(d) shows that L1 D-cache rsfail rate (reservation failures 

per access) drops from 42(9) to 13(2) for allocate-on-miss 

(allocate-on-fill). This is because almost all requests sent to 

the lower level memory hierarchy can be absorbed by L2 

cache under Xor mapping (Figure 10(c)).  And in turn round 

trip latency for L1 D-cache misses is significantly reduced, 

leading to sooner release of MSHRs occupied by those 

misses and thus relieved congestion in MSHR allocation as 

well as fewer reservation failures (memory pipeline stalls). 

Given the significant performance impact of memory 

partition mapping, we also check the effectiveness of MRPB 

when Xor mapping is adopted. Figure 11(a) shows that the 

performance of MRPB is also improved with Xor mapping. 

For example, the normalized IPC increases from 8.6x 

(13.5x) with Modulo mapping to 13.0x (16.2x) with Xor 

mapping on a 64KB L1 D-cache with allocate-on-miss 

(allocate-on-fill). Regarding the improvement over the 

baseline (Figure 11(b)), it decreases in some scenarios and 

increases in others since different benchmarks may react 

differently when memory partition mapping alters. 

Nevertheless, it is crucial to ensure balanced request 

distribution among memory partitions and L2 banks. 

VIII. MODELLING REALISTIC GPU CACHE BYPASSING 

In this section, we investigate how bypassing schemes 

perform when dedicated hardware structures are allocated to 

record the relevant information of bypassed requests and 

thus just a finite number of in-flight bypassed requests can 

be supported. Works [3][5][8][12][13][14][32] on GPU 

cache management have demonstrated that intelligent cache 

bypassing can significantly improve the overall performance 

but failed to discuss the constraint from hardware structures 

used to keep the relevant information of bypassed requests. 

However, it is unrealistic to assume that an unlimited 

number of in-flight bypassed requests can be supported. 

Similar to prior GPU cache bypassing studies, allocate-

on-miss is used and 128 MSHRs are deployed for a 16KB 

L1 D-cache in this study. #_BpR is used to denote the 

maximum number of in-flight bypassed requests that can be 

supported. And hardware structures similar to but simpler 

than regular MSHRs (Figure 5) can be used to keep the 

relevant information of bypassed requests such as which 

threads ask for the data and the destination register. 

Figure 12 (a) shows the performance (normalized to the 

baseline cache management without bypass) of MRPB [8] 

and MDB [5] when different numbers of in-flight bypassed 

 

   
              (a)               (b)             (c) 

Figure 12. Effectiveness of MRPB and MDB when different numbers of in-flight bypassed requests can be supported: (a) 

normalized IPC; (b)MDB: reservation failures due to the constraint of BpR_#; (c)MDB: average memory access latency. 
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requests can be served in parallel on a 16 KB L1 D-cache. 

MDB is a model-drive approach for GPU cache bypassing 

and it bypasses a certain number of warps or thread blocks 

based on the combined impact of cache contention and 

cache-miss-related resource congestion. Here we only show 

representative benchmarks with diverse and significant 

performance variance when BpR_# changes. BpR_inf is 

used by default in prior GPU cache bypassing works, in 

which any determined bypassing request can be sent to lower 

memory levels since there is no limitation from hardware to 

store the relevant information of bypassed requests. As 

shown, MDB outperforms MRPB, because it can improve 

L1 D-cache efficiency more effectively. Since benchmarks 

show more significant performance improvement and also 

more observable diversity with different values of BpR_# 

with MDB, we use MDB to further investigate the impact of 

BpR_# in the following discussion. 

It is intuitive to think that the higher BpR_#, the better the 

performance since the constraint from such a factor is 

relieved. However, it is not always the case and the 

examined benchmarks show diverse behaviors, as in Figure 

12(a). First, as expected, the performance increases from 

BpR_8 to BpR_32 for most of the examined benchmarks. 

Then, from BpR_32 to BpR_128, there is significant 

performance degradation for benchmarks BICG, MVT and 

ATAX while the performance of benchmarks GEMV 

remains relatively stables and benchmarks PTFL and KMNS 

continuously obtain performance improvement. Finally, 

there is not much variation between BpR_128 and BpR_inf 

across all the examined benchmarks. 

To better understand the impact of BpR_#, we studied the 

following two metrics: L1 D-cache BpR_rsfail_rate and 

average memory access latency. The former one denotes the 

number of reservation failures per bypassed request due to 

the constraint from BpR_# and such a reservation failure 

occurs when a new request is determined to bypass the L1 

D-cache but the BpR_# has already been reached by prior 

bypassed requests. And the metric, average memory access 

latency, represents the time interval between when a request 

is sent to the memory hierarchy and when the required data 

comes back to the requesting SM. 

Figure 12(b) shows L1 D-cache BpR_rsfail_rate with 

BpR_8, BpR_32, BpR_128 and BpR_inf. And we have the 

following observations. First, with BpR_8 where only 8 in-

flight bypassed requests can be supported in maximum, there 

are a large number of reservation failures due to the 

constraint of BpR_# and in turn many unsuccessful bypass 

attempts, resulting in severe memory pipeline stalls. In other 

words, the effectiveness of GPU cache bypassing may be 

undermined if just a small number of in-flight bypassed 

request can be supported. Second, L1 D-cache 

BpR_rsfail_rate significantly drops from BpR_8 to BpR_32 

and this leads to the performance improvement from BpR_8 

to BpR_32. Third, L1 D-cache BpR_rsfail_rate continues to 

drop from BpR_32 to BpR_128 and BpR_inf and there is 

almost no reservation failures due to the limitation of BpR_# 

for BpR_128 and BpR_inf. 

However, although L1 D-cache BpR_rsfail_rate is near-

zero for BpR_128 and BpR_inf, the performance is not 

necessarily better compared to that when fewer inflight 

bypassed requests can be supported. For instance, the 

normalized IPC drops from 3.49x with BpR_32 to 2.90x 

with BpR_128 for benchmarks BICG. Such performance 

degradation occurs due to the lengthened memory access 

latency, as shown in Figure 12(c). Specifically, the average 

memory access latency increases from 793 cycles with 

BpR_32 to 1051 with BpR_128 for BICG. 

Despite that benchmarks BICG, MVT and ATAX show 

performance degradation from BpR_32 to BpR_128, 

benchmarks PTFL and KMNS obtain continuous 

performance improvement with a larger BpR_#. Similar to 

other benchmarks, PTFL and KMNS encounter fewer 

reservation failures and lengthened memory access latency 

when more inflight bypassed values of memory access 

latency with a larger BpR_#, as shown in Figure 12 (b) and 

(c). However, the increment of memory access latency is 

minor for PTFL and KMNS. Specifically, from BpR_32 to 

BpR_128, the average memory access latency just increases 

from 413 to 469 for PTFL and from 405 to 507 for KMNS. 

Thus although the memory access latency is lengthened for 

PTFL and KMNS, it still has a relatively low value and does 

not offset the benefits brought by fewer reservation failures 

due to the constraint of BpR_#.  In contrast, since the average 

memory access latency of GEMV is more than 2200 cycles 

starting from BpR_32 and the benefits from fewer 

reservation failures are offset and the performance of GEMV 

remains relatively stable across all examined BpR_#. 

A request, which bypasses or encounters a miss at L1 D-

cache, goes through the interconnect network and then gets 

served by either L2 cache or DRAM. Therefore, the access 

latency of such a request has two major parts, one is to go 

through the interconnect network and the other is to be 

accommodated by L2 cache or DRAM. 

Thus to further investigate the impact of BpR_#, we 

check L2 cache miss rate and avg_BpR_in_circle, as shown 

in Figure 13. L2 cache miss rate indicates the L2 cache 

efficiency and the higher L2 cache miss rate, the more 

 

   
(a)               (b)           

Figure 13. (a )L2 cache efficiency and (b) the average 

number of inflight bypassed requests in MDB with 

different BpR_#. 
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requests are sent to DRAM and the larger average latency 

for a request to be served. The metric avg_BpR_in_circle 

denotes the average number of inflight bypassed requests 

during execution and it reflects the extent of interconnect 

congestion. Basically, the larger avg_BpR_in_circle, the 

higher degree of interconnect congestion and the longer 

latency for a request to go through the interconnect network. 

First, Figure 13(a) shows that for benchmarks BICG, MVT 

and ATAX, there is non-trivia L2 cache miss rate increase 

from BpR_32 to BpR_128 because more warps are actively 

scheduled to send requests to the memory subsystem. In the 

meanwhile, since there are more inflight bypassed requests, 

as shown in Figure (b), the latency to go through the 

interconnect network also increases. The combined effect of 

the two factors leads to the significantly lengthened memory 

access latency and performance degradation for the three 

benchmarks. Then for the benchmark PTFL and KMNS, L2 

cache miss rate remains lower than 0.1 for various BpR_#, 

indicating that more inflight bypassed requests do not thrash 

L2 cache and almost all L1 D-cache misses can be absorbed 

by it. On the other hand, unlike other benchmarks, PTFL and 

KMNS have a large number of bypassed requests and in turn 

a high degree of memory-level-parallelism (MLP). For 

example, with BpR_128, the value of avg_BpR_in_circle for 

BICG is 35, and it is as high as 123 for PTFL and 118 for 

KMNS. Since PTFL and KMNS experience a much shorter 

memory access latency and a higher MLP, they can have 

more requests served and in turn execute more data-

dependent instructions per cycle, and therefore obtains 

continuous performance improvement with a larger BpR_#. 

As demonstrated, the number of in-flight bypassed 

requests can significantly affect the performance of GPU 

cache bypassing schemes. Therefore, it is not realistic to 

assume there are unlimited hardware resources to store the 

relevant information of bypassed requests. On the other 

hand, the higher number of in-flight bypassed requests to be 

supported does not necessarily brings higher performance 

due to the congestion in interconnect network and conflicts 

at lower memory levels. Besides, a limitation on the number 

of in-flight bypassed requests can also achieve bypass 

throttling, which is targeted by some prior works [3][14]. So, 

we believe the fact that only a limited number of in-flight 

bypassed requests can be supported should be taken into 

account, to get more realistic results and conclusions in GPU 

cache bypassing studies. 

IX. CONCLUDED SOUND BASELINE CONFIGURATION 

In this part, we give out the suggested sound baseline 

configuration. Based on our study, we argue for the 

following methodology to be used in GPU memory 

architecture research: (1) an indexing function such as 

BXOR to reduce conflict misses in the caches; (2) 

allocation-on-fill policy in the GPU caches to improve cache 

utilization; (3) for studies on memory-level parallelism, the 

number of MSHRs needs to be explored as an important 

design space parameter; (4) a memory partition mapping 

function such as Xor to mitigate the problem of memory 

partition camping; (5) studies on cache bypassing should not 

assume unlimited number of bypasses. Instead, the bypass 

slots (i.e., the maximal number of in-flight bypasses) is an 

important design space parameter to be explored. 

If a single baseline is desired (i.e., no design space 

exploration), the sound one from our results is: 

BXOR + allocate-on-fill + 128 MSHRs + 32/128 

bypassing slots, with Xor mapping used to distribute 

requests among memory partitions. 

The sound baseline is open sourced at: 

https://github.com/ShadowArray/WDDD-Sound-Baseline 

Regarding the performance of the enhanced baseline, we 

show the accumulated performance improvement with a 

16KB L1 D-cache, in Figure 14. Without specific 

description in the legend, the default configuration is 

(BMOD, on-miss, 64MSHRs, Modulo) which uses BMOD 

for cache set indexing and allocate-on-miss as the cache line 

allocation policy, deploys 64MSHRs and distributes 

requests among memory partitions with Modulo mapping. 

As shown, the performance continuously increases when the 

baseline is enhanced. And on average, the accumulated 

performance is as high as 6.7x with (BXOR, on-fill, 

128MSHRs, Xor), compared to the default configuration in 

GPGPUsim. 

For the indexing function, it may not be the best 

performance-wise as some other hashing functions may 

distribute the accesses more evenly than BXOR. But 

considering the hardware complexity, our results suggest 

that BXOR is good to use. For allocation-on-fill vs. 

allocation-on-miss, allocation-on-fill extends the life-time of 

the cached data. Therefore, it is better than allocation-on-

miss in general. And 128 MSHRs can greatly mitigate 

reservation failures. Finally, as illustrated in Section VIII, 

applications show diverse behaviors when more inflight 

bypassed requests can be supported. Some applications show 

an up-then-down performance trend, some present a 

relatively stable performance and others continuously reap 

performance improvement. As such, we suggest that two 

points, 32 and 128 bypassing slots should be studied. On one 

hand, the configuration of 32 bypassing slots can achieve 

bypass throttling which is targeted by some prior works 

[3][14]. On the other hand, 128 bypassing slots can achieve 

performance close to that when there is no constraint on the 

number of inflight bypassed requests and since it leads to a 

  
Figure 14. Accumulated performance improvement from 

an enhanced baseline with a 16KB L1 D-cache. 
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higher memory-level parallelism, potentially it can benefit 

applications for which L2 cache has a high efficiency and 

can effectively filter requests sent to it. 

Although not shown here, in addition to Greedy-Then-

Oldest (GTO) used so far, we have also experimented Loose-

Round-Robin (LRR) warp scheduling policy and found that 

the overall performance is also boosted with the enhanced 

baseline as the memory subsystem efficiency is improved. 

Thus the suggested sound baseline shall be used despite that 

a different warp scheduling policy may be adopted. 

X. RELATED WORK 

Although cache indexing functions have been well studied 

on CPUs [6][11][16], previous works on GPU cache 

management did not elaborate on this issue in detail. On one 

hand, some works did not mention the underlying cache 

indexing function, like MRPB[8] and WarpPool[10]. On the 

other hand, although some other works pointed out that the 

BMOD mapping used by default in GPGPUsim might cause 

pathological results [12][14][17], they did not thoroughly 

study the impact of various advanced indexing functions. 

Cache line allocation policy determines what cache-miss-

related resources are allocated for an outstanding miss. For 

allocate-on-miss, those resources include a cache line [9], a 

MSHR and miss queue entry while allocate-on-fill [2] does 

not reserve a cache line. Therefore, allocate-on-fill tends to 

incur fewer reservation failures and enjoy more hits. 

Besides, although some works [17][27][31] have mentioned 

the potential performance impact of MSHR size on GPUs, 

they did not study nor examine the impact with varying other 

factors. In contrast, we studied the impact of MSHR size 

with different cache sizes and cache line allocation policies. 

Although many prior GPU cache bypassing works have 

shown significant performance improvements [3][5][8][13] 

[14][32] from their schemes, they did not mention the 

constraint from the hardware structures used to store the 

relevant information of bypassed requests. Since only a 

finite number of in-flight bypassed requests can be supported 

in reality, we demonstrate that it should be taken into account 

in GPU cache bypassing studies. 

XI.  CONCLUSIONS 

As throughput oriented processors, GPUs leverage massive 

multithreading to hide long operation latencies. However, 

the massive memory requests in GPGPU applications lead 

to fewer cache lines per thread and shorter cache line lifetime 

on GPUs than CPUs. In this work, we comprehensively 

investigated the performance impact of cache set indexing, 

cache line allocation policy, the number of MSHRs, and 

request distribution among memory partitions on GPUs as 

well as more realistic GPU cache bypassing. 

Our studies show that advanced cache indexing functions 

should be deployed in the first place to reduce the severe 

conflict misses; allocate-on-fill should be used to increase 

cache hits and reduce memory pipeline stalls; the number of 

MSHRs plays an important role in affecting the cache 

efficiency besides supporting MLP/TLP. Furthermore, we 

show that a good memory partition mapping function, such 

as Xor, should be deployed to mitigate the problem of 

memory camping. And while previous GPU cache bypassing 

works unrealistically assume an unlimited number of in-

flight bypassed requests can be supported, we demonstrate 

such a constraint can significantly affect the performance of 

a GPU cache bypassing scheme and this factor should be 

taken into account in GPU cache bypassing studies. Finally, 

we propose the sound baseline configuration for future GPU 

memory architecture studies and open source it. 
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