
Journal of Instruction-Level Parallelism 7 (2005) Submitted 01/05; published 04/2005

Adaptive Information Processing: An Effective Way to Improve
Perceptron Branch Predictors

Hongliang Gao HGAO@CS.UCF.EDU
Huiyang Zhou ZHOU@CS.UCF.EDU
School of Computer Science
University of Central Florida
Orlando, Florida 32816-2362
Voice (407) 823-5210
FAX (407) 823-5419

Abstract
Perceptron branch predictors achieve high prediction accuracy by capturing correlation from very
long histories. The required hardware, however, limits the history length to be explored practically.
In this paper, an important observation is made that the perceptron weights can be used to estimate
the strength of branch correlation. Based such an estimate, adaptive schemes are proposed to
preprocess history information so that the input vector to a perceptron predictor contains only
those history bits with the strongest correlation. In this way, a much larger history-information set
can be explored effectively without increasing the size of perceptron predictors. For the distributed
Championship Branch Prediction (CBP-1) traces, our proposed scheme achieves a 47%
improvement over a g-share predictor of the same size1. For SPEC2000 benchmarks, our proposed
scheme outperforms the g-share predictor by 35% on average.

1. Introduction

Given its great impact on performance, branch prediction has been extensively studied and various
branch predictors have been proposed in the literature. In this paper, we attack the problem from a
different perspective: rather than devising another new prediction algorithm, we propose to
process the inputs to branch predictors. The insight behind our idea is that many existing branch
prediction algorithms are very powerful to exploit correlation from their inputs such as local/global
branch history, and many mispredictions are actually due to the lack of such correlation from the
inputs to branch predictors. If the inputs can be configured to maximize the correlation, much
higher prediction accuracy can be achieved without adding extra complexity onto the branch
predictors.

As presented in [2], dynamic branch prediction schemes can be described using a generic
conceptual system model, shown in Figure 1. The source information, including branch addresses
(PC), local/global histories (LHR/GHR), along with other run-time information, is gathered when a
program executes. The information processor extracts a subset of the source information and forms
an information vector. Then, the predictor processes the information vector and makes a prediction.
Traditionally, various Markov Finite State Machines (FSMs) are used as the predictor [2].
Recently, predictors based on perceptrons [5], [6] have been proposed and shown to have superior
prediction accuracy to the widely used FSM-based predictors such as g-share [7] and two-level

1 Our proposed scheme achieves the highest prediction accuracy for the un-disclosed CBP-1 traces and
won the Champion of the first Championship Branch Prediction (CBP-1) contest [1].

GAO & ZHOU

2

predictors [10]. One main reason is that the cost of a perceptron predictor scales linearly rather than
exponentially, thereby enabling it to explore correlation from much longer information vectors. In
a recent study [8], the accuracy of perceptron predictors is further improved with the following
extensions: using pseudo-tag to reduce aliasing impact, skewing perceptron weight tables to
improve table utilization, and introducing redundant history to handle linearly inseparable data
sets. The nonlinear redundant history also leads to a more efficient representation, Multiply-Add
Contributions (MAC), of perceptron weights and a simpler hardware implementation [8].

Figure 1: A conceptual system model for branch prediction [2].

Most branch predictors employ an implicit information processor, simply extracting some
number of bits from GHR, LHR or PC. The novelty of this paper is a new correlation-based
information processor, which extracts the information vector from information source adaptively
based on the strength of branch correlation. As highlighted in Section 2, a key observation of our
approach is that perceptron weights can be used as a quantitative measure of correlation between
a branch and the input information vector. With such a measure, the information vector can then
be re-assembled accordingly to maximize the branch correlation. Additionally, since the
adaptation is performed at a coarse grain, e.g., at program phase boundaries or at an interval of a
certain number of branches, the adaptation logic is not latency critical. In [9], similar branch
correlation is identified by tracking explicit register dataflow dependencies.

The remainder of the paper is organized as follows. A micro-benchmark is used in Section 2 to
illustrate the correlation exploitation and motivate our main ideas. The proposed adaptive
information processing schemes are contained in Section 3. Section 4 presents the overall
predictor design including the special handling of loop and bias branches to minimize their adverse
impact on the perceptron predictor. The experimental results using CBP-1 and SPEC2000
benchmarks are discussed in Section 5. Finally, Section 6 concludes the paper.

2. Exploiting Correlation with Perceptron Branch Predictors

Many branch predictors, including two-level and g-share predictors, achieve high prediction
accuracy by exploiting correlation from history information. Perceptron predictors, moreover, have
an additional capability to estimate the strength of such correlation, as illustrated from the example
shown in Figure 2.

The micro-benchmark in Figure 2 contains four conditional branches (B1, B2, B3, and B4): B1
is determined by two random values, B2 correlates with B1 as both branches share the same random
variable r1, B3 is simply the inverse of B1, and B4 correlates with both B2 and B3 using an XOR
function. To predict these four branches, a 4-entry perceptron predictor (i.e., each branch has its
own perceptron) with 8-bit global branch history (i.e., an 8-bit GHR) [6] is used. After simulating
100M instructions, the perceptron weights (w1-w8) for these branches are reported and the
misprediction rates are 50.09%, 25.45%, 0%, and 19.11% respectively for the branches B1-B4.

Source
(program) Information

 vector

Information
processor

Predictor
FSMs
Perceptrons

Correlation feedback

Information:
Br address
Br history
Br type
Other run
time info.

ADAPTIVE INFORMATION PROCESSING: AN EFFECTIVE WAY TO IMPROVE PERCEPTRON PREDICTORS

3

 Several important observations can be made from Figure 2. First, perceptron weights embody
the correlation information and the absolute values of perceptron weights provide an estimate of the
correlation strength. As the branch B1 finds no correlation from previous branch history, it features
with small random perceptron weights. The branch B2 correlates to B1. So, its perceptron weights
contain a high w1 (i.e., strong correlation with GHR[0]) and small random w2-w8. The branch B3
shares the same condition (inverse) as B1. Therefore, it has a singular large weight, w2 (i.e., strong
correlation with GHR[1]). The branch B4, due to its nonlinear correlation with previous branches,
has more relatively large perceptron weights.

 Source Program misprediction rate (MR) and perceptron weights
while (1){

 r1 = Rand(0, 1000); r2 = Rand(0, 1000);

 c1 = r1 > r2; c2 = r1 > 500; c3 = r1<=r2;

 if (c1) B1: MR=50.09%

 count1++; w1-w8: -1 -1 5 7 -3 -5 -1 -1

 If (c2) B2: MR=25.45%

 count2++; w1-w8: 26 0 0 2 2 2 0 0

if (c3) B3: MR=0%

 count3++; w1-w8: -1 -31 1 1 -1 -1 -3 -1

 if (c2 ^ c3) B4: MR=19.11%

 count4++; w1-w8: 12 22 -12 10 10 -2 0 -2

}

Figure 2: A micro benchmark to illustrate that perceptron weights can be used as a quantitative
measure of branch correlation.

Secondly, based on the correlation strength, the input to a perceptron predictor can be
re-assembled to utilize resource more efficiently. For the example in Figure 2, we know that
GHR[0] and GHR[1] carry the most correlation. Therefore, we can reduce the perceptron size to
only exploit correlation from a 2-Bit GHR instead of an 8-bit GHR and we found that the
perceptron predictor with the shorter history achieves similar or slightly better prediction
accuracies (misprediction rates as 50.03%, 25.02, 0%, and 18.21% for B1-B4 respectively). The
improvement is due to the reduced noise effect in the perceptron training process. Note that such
correlation-based input/history re-assembling is more flexible than history length adjustment [5].
For example, if it is determined that GHR[0] and GHR[7] carry the most correlation, we can still
use a perceptron predictor with two weights to capture correlation from the 2-bit history formed
with GHR[0] and GHR[7]. Dynamic history length adjustment, on the other hand, would fail to
exploit such correlation patterns.

Thirdly, if the perceptron size is fixed (e.g., with 3 weights), the input can be re-configured to
maximize branch correlation by exploring a much larger history-information set and replacing
weak correlation bits with stronger ones. For example, rather than a 3-bit GHR, we can form the
input vector to the perceptron predictor with GHR[1:0] and a redundant bit (GHR[0]^GHR[1])
since the redundant history is helpful to handle linearly inseparable data sets [8]. For the example in
Figure 2, the misprediction rate of the branch B4 drops to 0% with this redundant information bit.

In summary, we can see that with correlation strength effectively measured, there are new
opportunities to further improve the performance of branch predictors, either upon resource
efficiency or upon prediction accuracy. In the next section, we present our design effort to enhance
prediction accuracy with a given prediction table budget for CBP-1. In the rest of the paper, an
MAC perceptron predictor [8] is used as the baseline predictor although the proposed idea does
not depend on any particular type of perceptron predictors.

GAO & ZHOU

4

3. Enhancing Branch Correlation Using Adaptive Information Processing

Based on the principles developed in Section 2, we propose two types of adaptive schemes to
extract information bits to maximize branch correlation. The first is based on static workload
profiling. The second is based on dynamic examination of perceptron weights and serves as a
safe-net for workload misdetections or phase variations inside a workload.

In a MAC predictor, the perceptron weights are distributed in many weight tables. For each
table, 4-bit information data are selected and used as the column address for the corresponding
weight. The 4-bit inputs to all the weight tables simply form the information vector, as shown in
Figure 3. The shaded units in Figure 3 are introduced for our proposed adaptation schemes, as
described in detail next.

… …

… …

w0 table
wt table 1 wt table 2 wt table N

∑
Prediction = sign(y) y

GHR

LHR table

Index 0 Index 1 Index 2 Index N

(c1, c2, c3, …)

c1 weights c2 weights cN weights

PC

Information Information feeding logic (distributing the required bits to MUXes)

Information vector

 MUX2

4

4

c1

MUX1

4
4 4

4 4 4 4

type type

c2

4

type

cN

4

Workload
Detector Adaptation

Logic type

Figure 3: An MAC perceptron predictor with adaptive information processing (the shaded units

are introduced for adaptive information processing).

3.1. Profile-directed Adaptation

The distributed CBP traces are grouped in four categories: floating point (FP), integer (INT),
multi-media (MM), and server benchmarks (SERV). Each type of workload exhibits different
behavior and the same information bits, such as PC, LHR, or GHR, carry different correlation
strength for different types of workloads. For example, SERV benchmarks have a large number of
static branches and their PC bits carry strong correlation when multiple branches share the same
perceptron. FP workloads, in comparison, have much fewer static branches and stronger correlation
is found from global/local history than from PC bits.

Because of this workload-dependent behavior, we propose to use static profiling to determine
appropriate configurations of the input vector for each type of workloads. Then, at run-time, a
workload detector determines the workload type and selects a predetermined configuration
accordingly. As this adaptation is based on profiling, it is called profile-directed adaptation. In
our proposed implementation as shown in Figure 3, the inputs to the first multiplexer (MUX1) of

ADAPTIVE INFORMATION PROCESSING: AN EFFECTIVE WAY TO IMPROVE PERCEPTRON PREDICTORS

5

each perceptron weight table are the pre-determined configuration and the control of the
multiplexer is the workload type figured out by the workload detector. Based on CBP traces, the
predetermined configurations for each type of workloads are shown in Figure 4. Taking the weight
table 1 (labeled ‘wt table 1’) as an example, the inputs to its MUX1 are 4-bit local history
(LHR[0:3]) for FP workloads and 4-bit PC (PC[0:3]) for other workloads.

For CBP traces, the workload detector uses the following detection criteria: (a) SERV
benchmarks feature with a large number of static branches; (b) a small/medium number of static
branches, a high number of floating point operations, and a high/medium number of instructions
using XMM registers imply FP/MM workloads; and (c) the remaining benchmarks are treated as
default INT workloads. More details can be found in the publicly distributed source code [1].

 PC[0:3] LHR[0:3] GHR[0:3] GHR[4:7] ……

INT configuration

 LHR[0:3] LHR[4:7] GHR[0:3] GHR[4:7] ……

FP configuration

 PC[0:3] LHR[0:3] GHR[0:3] GHR[4:7] …… PC[0:3] PC[4:7] PC[8:11] PC[12:15] ……

SERV configuration MM configuration

Figure 4: Pre-determined input configurations for different types of workloads.

3.2. Correlation-directed Adaptation

Profile-directed adaptation exploits coarse-grain workload behavior (i.e., one configuration for the
entire run after the workload type is determined). If a workload exhibits significant phase
behavior1, such a global configuration would fail to fit the changing requirements. To overcome
such inefficiency, we propose an additional adaptation scheme based on dynamical correlation
examination and it is named correlation-directed adaptation.

In correlation-directed adaptation, the strength of correlation is examined at a certain
execution interval (or a program phase) and the inputs with weak correlation will be replaced
with those potentially having stronger correlation. For example, if some LHR bits are found with
weak correlation while GHR bits show stronger correlation, replacing those LHR bits with
additional GHR bits would be an appealing choice.

As shown in Figure 3, besides the MUX1, which is used to support profile-directed adaptation,
there is another multiplexer (MUX2) for each table. The MUX2 fine-tunes the pre-determined
workload-dependent information vector based on the strength of branch correlation. For each
weight table, the inputs to its MUX2 include the 4-bit output from MUX1, 4-bit GHR, 4-bit LHR,
and 4-bit PC. The control bits of MUX2, ci, are initialized so that the 4-bit output from MUX1 is
selected. Then, after a certain execution interval (or a program phase), the strength of branch
correlation is examined for the 4-bit information data and those with weak correlation will be
replaced. In order to measure correlation strength of the 4-bit input to weight table 1, for example,
all the weights in the row selected by the index1 are read and the summation of each weight (the
absolute value) will be used as a quantitative measure of the correlation between the 4
information bits and the current branch instruction. If it turns out that the GHR/PC/LHR bits
carries the strongest correlation, the 4 information bits with the minimum correlation will be
replaced with 4 more GHR/PC/LHR bits by setting the control bits of MUX2 of the
corresponding table. For example, for a branch in a MM benchmark, if its 4 PC bits (e.g., the

1 The distributed CBP traces show little phase behavior given its limited trace length.

GAO & ZHOU

6

input to weight table 1) have the strongest correlation while its LHR bits (e.g., the input to weight
table 2) have the weakest correlation, the input to weight table 2 will be configured as 4 more PC
bits (e.g., PC[4:7]), replacing the LHR bits.

In the design shown in Figure 3, each entry in a weight table has its own control signal ci so
that the input vector can be tuned for each entry. For example, the perceptron corresponding to
the first entry of the weight table 1 may choose to exploit correlation from 4 PC bits while the one
corresponding to the second entry exploits correlation from 4 GHR bits. Such flexibility requires
more hardware resource (2-bit control for each entry) and more complex information feeding
logic. A more efficient design is to tune the input configuration at the table level so that all the
entries in the same table will share the same input configuration (i.e., only one ci for each table).
We call these two adaptation designs as per-entry and per-table correlation-directed adaptation
and examine their performance impact in Section 5.

4. Overall Branch Predictor Structure

For conditional branches with simple taken/not taken patterns, a perceptron predictor is not a good
candidate due to its complexity and potential latency and power consumption issues. In addition,
such simple branch patterns could pollute perceptron weights when the same weights are used to
predict other branches. Therefore, we propose a bias branch predictor and incorporate a loop
branch predictor to handle these special branches, as shown in Figure 5.

…

Loop branch predictor PC

 tag loop count taken count confidence LRU

PC Bias
branch
predictor

GHR

LHR
table

PC

MAC
perceptron

predictor with
adaptation

workload
detector

runtime
info.

loop hit

loop prediction

loop hit

NT

Taken
loop prediction prediction

prediction

11

01 00

10

 Initial (predict NT)

Always NT
(predict NT)

Not bias (use other predictors)

Figure 5: The overall branch predictor structure.

The bias predictor is an array of 2-bit FSMs indexed with PC. Each FSM transits from the
initial state ‘11’ into the state ‘01’ or ‘00’ depending on whether the branch is taken or not taken
respectively. The state ‘01’ implies the branch is always taken while the state ‘00’ means the
branch is always not taken. An FSM transits to the state ‘10’ whenever the actual outcome
disagrees with the bias state. In this case, the final prediction will be made by other predictors.

The loop branch predictor is a set-associative cache structure and each entry consists of loop
count, current iteration count (taken count), tag, confidence (increased/decreased when the loop

ADAPTIVE INFORMATION PROCESSING: AN EFFECTIVE WAY TO IMPROVE PERCEPTRON PREDICTORS

7

count matches/mismatches), and LRU bits. A branch hits in the loop branch predictor only if there
is a tag match and the confidence is high.

The overall prediction priority order is the bias prediction if a branch is biased (i.e., the bias
state is not ‘10’), the loop branch prediction if the branch hits in the loop predictor, and then the
prediction from the MAC perceptron predictor with adaptive information processing.

During update, the bias predictor is updated first. Only if the bias state is 10 (i.e., not biased),
the loop branch predictor and the MAC perceptron predictor are examined. If the branch hits in the
loop branch predictor, the MAC perceptron predictor is not updated. In this way, the adverse
impacts from bias and loop branches upon the MAC perceptron predictor, including weight
pollution and un-necessary updates, are effectively eliminated.

4.1. Hardware budget requirements

With the branch predictor configuration that we proposed for CBP-1, the hardware budget
requirements are summarized in Table 1.
Table 1: Hardware budget.
 COMPONENT CONFIGURATION COST

Bias branch predictor 2293 entries 2293 x 2 = 4586 bits.

Loop branch predictor 24 entries, 8-way set associative 1344 bits

Information PC, GHR: 100 bits, LHR: 8 bits, 63 entries 32 + 100 + 8 * 63 = 636 bits

MAC perceptron predictor
with adaptive information
processing

W0 table: 61 entries, 8 bits each
Other tables’ sizes: 63, 55, 53, 53, 51, 49, 43, 41, 41, 39, 37, 37,
and 35. Total MAC entries: 597. Each MAC entry has 16
weights. Each weight has 6 bits.
Control bits: 2 bits each entry

 61 * 8 +
 597 * 16 * 6 +
 597 * 2
 = 58994 bits

Adaptation Logic Interval : 100000 conditional branches 22 bits

Workload Detector Interval: 10000 instructions and 10000 conditional branches 82 bits

 Total Cost: 65649 bits

5. Results

5.1. CBP-1 traces

Figure 6 shows the prediction accuracy of different branch predictors with the same 8KB
prediction table size, including a g-share predictor, an MAC perceptron predictor, and our
proposed predictor with different adaptation schemes, profile-directed adaptation (labeled
‘profile’), profile-directed with per-table correlation-directed adaptation (labeled
‘profile+per-table’), and profile-directed with per-entry correlation-directed adaptation (labeled
‘profile+per-entry’). Compared to the g-share predictor, our proposed adaptive schemes reduce
the misprediction rate by 47% on average. Compared to the fine-tuned baseline MAC perceptron
predictor, the improvement from adaptation is close to 10%. As the distributed CBP traces do not
exhibit strong phase behavior, profile-directed adaptation reaps the most benefit (2.847
mispredictions per 1K instructions) and correlation-directed adaptation only show small

GAO & ZHOU

8

incremental improvements (2.846 and 2.822 mispredictions per 1K instructions for per-table and
per-entry correlation-directed adaptation respectively).

Since our overall predictor design contains multiple predictors handling different branches, we
investigate the contribution of each predictor in Figure 7, which shows the percentage of
predictions (both correct and incorrect) made by each predictor. It can be seen that the simple bias
predictor and the loop predictor filter out a significant amount of dynamic branches and effectively
reduces the aliasing and update cost of the MAC perceptron predictor. On average, among all the
dynamic predictions, 17.61% (and 0.03%) are correct (and incorrect) predictions made by the bias
predictor, 16.56% (and 0.03%) are correct (and incorrect) predictions made by the loop predictor,
and 63.13% (and 2.64%) are correct and (incorrect) predictions made by the MAC perceptron
predictor with adaptation.

Branch M isprediction Rates

0

2

4

6

8

10

12

14

F1 F2 F3 F4 F5 I1 I2 I3 I4 I5 M1 M2 M3 M4 M5 S1 S2 S3 S4 S5 avg

m
is

pr
ed

ic
tio

ns
 p

er
 1

K
 in

sn

gshare

MAC
prof ile

prof ile+per-table
prof ile+per-entry

Figure 6: Branch misprediction rates on CBP-1 traces.

Prediction Contribution

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

F1 F2 F3 F4 F5 I1 I2 I3 I4 I5 M
1

M
2

M
3

M
4

M
5

S1 S2 S3 S4 S5 av
g

pe
rc

en
ta

ge

M acCo rr

LoopCo rr

B iasCo rr

M acM iss

LoopM iss

B iasM iss

Figure 7: Prediction contribution from individual branch predictors in the overall design.

ADAPTIVE INFORMATION PROCESSING: AN EFFECTIVE WAY TO IMPROVE PERCEPTRON PREDICTORS

9

5.2. SPEC2000 benchmarks

In this experiment, we examine the prediction accuracy of the proposed scheme on SPEC 2000
CINT and CFP benchmarks [3]. In our simulation, the reference inputs are used. We fast-forward
the first 500M instructions and simulate the next 1000M instructions. We also assume that the
workload type (FP or INT) can be detected correctly and the FP/INT configurations profiled
based on the CBP traces are then used for FP/CINT benchmarks.

Branch M isprediction Rates

0

2

4

6

8

10

12

14

16

18

bz
ip2 ga

p
gc
c

gz
ip mc

f

pa
rse
r

pe
rl

tw
olf

vo
rte
x vp

r
am
mp art

eq
ua
ke

me
sa

sw
im

wu
pw
ise av

g

m
is

pr
ed

ic
to

ns
 p

er
 1

K
 in

sn

gshare

pro file

pro file+per-table
pro file+per-entry

Figure 8: Branch misprediction rates on SPEC 2000 benchmarks.

Predictor contribution

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bz
ip2 ga

p
gc
c

gz
ip mc

f

pa
rse
r

pe
rl
tw
olf

vo
rte
x vp

r
am
mp art

eq
ua
ke

me
sa

sw
im

wu
pw
ise av

g

Pe
rc

en
ta

ge

M acCo rr

LoopCo rr

B iasCo rr

M acM iss

LoopM iss

B iasM iss

Figure 9: Prediction contribution from individual branch predictors in the overall design.

 From the misprediction rates that are reported in Figure 8, it can be seen that our proposed
predictor outperforms the g-share predictor by 35% on average. Another interesting observation
is that the FP and INT configurations profiled using the CBP traces work well for SPEC
benchmarks and only little improvements are from the additional per-table and per-entry

GAO & ZHOU

10

correlation-directed adaptation. This result is promising since profile-directed adaptation is much
simpler to implement than correlation-directed adaptation.

Individual contributions from the bias, loop, and MAC perceptron predictor with adaptation
are examined in Figure 9 and it can be seen that the bias and loop predictors accurately predicts a
significant amount of dynamic branches for SPEC 2000 benchmarks, similar to CBP traces.

6. Conclusions

This paper takes an untraditional perspective to attack the branch prediction problem: rather than
a new prediction scheme to better exploit branch correlation, we propose to process the inputs to
branch predictors to maximize such correlation. An important observation is made from
perceptron branch predictors that the perceptron weights provide an estimate of the correlation
strength. Based on such correlation strength, novel adaptive information processing schemes are
proposed to dynamically re-assemble the input information vector so that it contains only those
history bits with the strongest correlation. The experiments using CBP traces and SPEC 2000
benchmarks show that our proposed approach achieves significant improvement on prediction
accuracy over the competing branch prediction schemes.

References

 [1] The official CBP-1 website: http://www.jilp.org/cbp/.

 [2] I. K. Chen, J. T. Coffey, and T. N. Mudge, “Analysis of branch prediction via data
compression”, Proc. of the 7th Int. Conf. on Arch. Support for Programming Languages
and Operating Systems (ASPLOS-VII), 1996.

 [3] J. Henning, “SPEC2000: measuring CPU performance in the new millennium”, IEEE
Computer, July 2000.

 [4] T. Juan, S. Sanjeevan, and J. Navarro, “A third level of adaptivity for branch prediction”,
Proc. of the 25th Int. Symp. on Comp. Arch (ISCA-25), 1998.

 [5] D. Jimenez and C. Lin, “Dynamic branch prediction with perceptrons”, Proc. of the 7th Int.
Symp. on High Perf. Comp. Arch (HPCA-7), 2001.

 [6] D. Jimenez and C. Lin, “Neural methods for dynamic branch prediction”, ACM Trans. on
Computer Systems, 2002.

 [7] S. MacFarling, “Combining branch predictors”, Technical Report, DEC, 1993.

 [8] A. Seznec, “Revisiting the perceptron predictor”, Technical Report, IRISA, 2004.

 [9] R. Thomas, M. Franklin, C. Wilkerson, and J. Stark, “Improving branch prediction by
dynamic dataflow-based identification of correlated branches from a large global history”,
Proc. of the 30th Int. Symp. on Comp. Arch (ISCA-30), 2003.

 [10] T.-Y. Yeh and Y. Patt, “Alternative implementations of two-level adaptive branch
prediction”, Proc. of the 22nd Int. Symp. on Comp. Arch (ISCA-22), 1995.

