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Abstract 
Perceptron branch predictors achieve high prediction accuracy by capturing correlation from very 
long histories. The required hardware, however, limits the history length to be explored practically. 
In this paper, an important observation is made that the perceptron weights can be used to estimate 
the strength of branch correlation. Based such an estimate, adaptive schemes are proposed to 
preprocess history information so that the input vector to a perceptron predictor contains only 
those history bits with the strongest correlation. In this way, a much larger history-information set 
can be explored effectively without increasing the size of perceptron predictors. For the distributed 
Championship Branch Prediction (CBP-1) traces, our proposed scheme achieves a 47% 
improvement over a g-share predictor of the same size1. For SPEC2000 benchmarks, our proposed 
scheme outperforms the g-share predictor by 35% on average. 

1. Introduction 

Given its great impact on performance, branch prediction has been extensively studied and various 
branch predictors have been proposed in the literature. In this paper, we attack the problem from a 
different perspective: rather than devising another new prediction algorithm, we propose to 
process the inputs to branch predictors. The insight behind our idea is that many existing branch 
prediction algorithms are very powerful to exploit correlation from their inputs such as local/global 
branch history, and many mispredictions are actually due to the lack of such correlation from the 
inputs to branch predictors. If the inputs can be configured to maximize the correlation, much 
higher prediction accuracy can be achieved without adding extra complexity onto the branch 
predictors. 

As presented in [2], dynamic branch prediction schemes can be described using a generic 
conceptual system model, shown in Figure 1. The source information, including branch addresses 
(PC), local/global histories (LHR/GHR), along with other run-time information, is gathered when a 
program executes. The information processor extracts a subset of the source information and forms 
an information vector. Then, the predictor processes the information vector and makes a prediction. 
Traditionally, various Markov Finite State Machines (FSMs) are used as the predictor [2]. 
Recently, predictors based on perceptrons [5], [6] have been proposed and shown to have superior 
prediction accuracy to the widely used FSM-based predictors such as g-share [7] and two-level 
                                                 
1 Our proposed scheme achieves the highest prediction accuracy for the un-disclosed CBP-1 traces and 
won the Champion of the first Championship Branch Prediction (CBP-1) contest [1]. 
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predictors [10]. One main reason is that the cost of a perceptron predictor scales linearly rather than 
exponentially, thereby enabling it to explore correlation from much longer information vectors. In 
a recent study [8], the accuracy of perceptron predictors is further improved with the following 
extensions: using pseudo-tag to reduce aliasing impact, skewing perceptron weight tables to 
improve table utilization, and introducing redundant history to handle linearly inseparable data 
sets. The nonlinear redundant history also leads to a more efficient representation, Multiply-Add 
Contributions (MAC), of perceptron weights and a simpler hardware implementation [8].  

 
Figure 1: A conceptual system model for branch prediction  [2]. 

Most branch predictors employ an implicit information processor, simply extracting some 
number of bits from GHR, LHR or PC. The novelty of this paper is a new correlation-based 
information processor, which extracts the information vector from information source adaptively 
based on the strength of branch correlation. As highlighted in Section 2, a key observation of our 
approach is that perceptron weights can be used as a quantitative measure of correlation between 
a branch and the input information vector. With such a measure, the information vector can then 
be re-assembled accordingly to maximize the branch correlation. Additionally, since the 
adaptation is performed at a coarse grain, e.g., at program phase boundaries or at an interval of a 
certain number of branches, the adaptation logic is not latency critical. In [9], similar branch 
correlation is identified by tracking explicit register dataflow dependencies. 

The remainder of the paper is organized as follows. A micro-benchmark is used in Section 2 to 
illustrate the correlation exploitation and motivate our main ideas. The proposed adaptive 
information processing schemes are contained in Section 3. Section 4 presents the overall 
predictor design including the special handling of loop and bias branches to minimize their adverse 
impact on the perceptron predictor. The experimental results using CBP-1 and SPEC2000 
benchmarks are discussed in Section 5. Finally, Section 6 concludes the paper. 

2. Exploiting Correlation with Perceptron Branch Predictors 

Many branch predictors, including two-level and g-share predictors, achieve high prediction 
accuracy by exploiting correlation from history information. Perceptron predictors, moreover, have 
an additional capability to estimate the strength of such correlation, as illustrated from the example 
shown in Figure 2.   

The micro-benchmark in Figure 2 contains four conditional branches (B1, B2, B3, and B4): B1 
is determined by two random values, B2 correlates with B1 as both branches share the same random 
variable r1, B3 is simply the inverse of B1, and B4 correlates with both B2 and B3 using an XOR 
function. To predict these four branches, a 4-entry perceptron predictor (i.e., each branch has its 
own perceptron) with 8-bit global branch history (i.e., an 8-bit GHR) [6] is used. After simulating 
100M instructions, the perceptron weights (w1-w8) for these branches are reported and the 
misprediction rates are 50.09%, 25.45%, 0%, and 19.11% respectively for the branches B1-B4.   
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 Several important observations can be made from Figure 2. First, perceptron weights embody 
the correlation information and the absolute values of perceptron weights provide an estimate of the 
correlation strength. As the branch B1 finds no correlation from previous branch history, it features 
with small random perceptron weights. The branch B2 correlates to B1. So, its perceptron weights 
contain a high w1 (i.e., strong correlation with GHR[0]) and small random w2-w8. The branch B3 
shares the same condition (inverse) as B1. Therefore, it has a singular large weight, w2 (i.e., strong 
correlation with GHR[1]). The branch B4, due to its nonlinear correlation with previous branches, 
has more relatively large perceptron weights. 

                        Source Program                     misprediction rate (MR) and perceptron weights 
while (1){ 

  r1 = Rand(0, 1000); r2 = Rand(0, 1000); 

  c1 = r1 > r2; c2 = r1 > 500; c3 = r1<=r2; 

  if (c1)                                    B1: MR=50.09%  

   count1++;                                     w1-w8: -1  -1   5   7  -3  -5  -1  -1 

  If (c2)                                    B2: MR=25.45%  

   count2++;                                     w1-w8: 26   0   0   2   2   2   0   0    

if (c3)                                    B3: MR=0%   

   count3++;                                     w1-w8: -1 -31   1   1  -1  -1  -3  -1  

  if (c2 ^ c3)                               B4: MR=19.11% 

   count4++;                                     w1-w8: 12  22 -12  10  10  -2   0  -2 

} 
 

Figure 2: A micro benchmark to illustrate that perceptron weights can be used as a quantitative 
measure of branch correlation.  

Secondly, based on the correlation strength, the input to a perceptron predictor can be 
re-assembled to utilize resource more efficiently. For the example in Figure 2, we know that 
GHR[0] and GHR[1] carry the most correlation. Therefore, we can reduce the perceptron size to 
only exploit correlation from a 2-Bit GHR instead of an 8-bit GHR and we found that the 
perceptron predictor with the shorter history achieves similar or slightly better prediction 
accuracies (misprediction rates as 50.03%, 25.02, 0%, and 18.21% for B1-B4 respectively). The 
improvement is due to the reduced noise effect in the perceptron training process. Note that such 
correlation-based input/history re-assembling is more flexible than history length adjustment [5]. 
For example, if it is determined that GHR[0] and GHR[7] carry the most correlation, we can still 
use a perceptron predictor with two weights to capture correlation from the 2-bit history formed 
with GHR[0] and GHR[7]. Dynamic history length adjustment, on the other hand, would fail to 
exploit such correlation patterns.  

Thirdly, if the perceptron size is fixed (e.g., with 3 weights), the input can be re-configured to 
maximize branch correlation by exploring a much larger history-information set and replacing 
weak correlation bits with stronger ones. For example, rather than a 3-bit GHR, we can form the 
input vector to the perceptron predictor with GHR[1:0] and a redundant bit (GHR[0]^GHR[1]) 
since the redundant history is helpful to handle linearly inseparable data sets [8]. For the example in 
Figure 2, the misprediction rate of the branch B4 drops to 0% with this redundant information bit. 

In summary, we can see that with correlation strength effectively measured, there are new 
opportunities to further improve the performance of branch predictors, either upon resource 
efficiency or upon prediction accuracy. In the next section, we present our design effort to enhance 
prediction accuracy with a given prediction table budget for CBP-1. In the rest of the paper, an 
MAC perceptron predictor [8] is used as the baseline predictor although the proposed idea does 
not depend on any particular type of perceptron predictors. 
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3. Enhancing Branch Correlation Using Adaptive Information Processing 

Based on the principles developed in Section 2, we propose two types of adaptive schemes to 
extract information bits to maximize branch correlation. The first is based on static workload 
profiling. The second is based on dynamic examination of perceptron weights and serves as a 
safe-net for workload misdetections or phase variations inside a workload.  

In a MAC predictor, the perceptron weights are distributed in many weight tables. For each 
table, 4-bit information data are selected and used as the column address for the corresponding 
weight. The 4-bit inputs to all the weight tables simply form the information vector, as shown in 
Figure 3. The shaded units in Figure 3 are introduced for our proposed adaptation schemes, as 
described in detail next. 

 

… … 

… … 

w0 table 
wt table 1 wt table 2 wt table N 

∑ 
Prediction = sign(y) y 

GHR 

LHR table 

Index 0 Index 1   Index 2 Index N 

(c1, c2, c3, …) 

c1 weights c2 weights cN weights 

PC 

Information Information feeding logic (distributing the required bits to MUXes) 

Information vector 

   MUX2 

4

4 

c1 

MUX1 

4 
4 4 

4 4 4 4 

type type 

c2 

4

type 

cN 

4 

Workload  
Detector Adaptation  

Logic type 

 
Figure 3: An MAC perceptron predictor with adaptive information processing (the shaded units 

are introduced for adaptive information processing). 

3.1. Profile-directed Adaptation 

The distributed CBP traces are grouped in four categories: floating point (FP), integer (INT), 
multi-media (MM), and server benchmarks (SERV). Each type of workload exhibits different 
behavior and the same information bits, such as PC, LHR, or GHR, carry different correlation 
strength for different types of workloads. For example, SERV benchmarks have a large number of 
static branches and their PC bits carry strong correlation when multiple branches share the same 
perceptron. FP workloads, in comparison, have much fewer static branches and stronger correlation 
is found from global/local history than from PC bits.  

Because of this workload-dependent behavior, we propose to use static profiling to determine 
appropriate configurations of the input vector for each type of workloads. Then, at run-time, a 
workload detector determines the workload type and selects a predetermined configuration 
accordingly. As this adaptation is based on profiling, it is called profile-directed adaptation. In 
our proposed implementation as shown in Figure 3, the inputs to the first multiplexer (MUX1) of 
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each perceptron weight table are the pre-determined configuration and the control of the 
multiplexer is the workload type figured out by the workload detector. Based on CBP traces, the 
predetermined configurations for each type of workloads are shown in Figure 4. Taking the weight 
table 1 (labeled ‘wt table 1’) as an example, the inputs to its MUX1 are 4-bit local history 
(LHR[0:3]) for FP workloads and 4-bit PC (PC[0:3]) for other workloads.  

For CBP traces, the workload detector uses the following detection criteria: (a) SERV 
benchmarks feature with a large number of static branches; (b) a small/medium number of static 
branches, a high number of floating point operations, and a high/medium number of instructions 
using XMM registers imply FP/MM workloads; and (c) the remaining benchmarks are treated as 
default INT workloads. More details can be found in the publicly distributed source code [1]. 

  PC[0:3]    LHR[0:3]  GHR[0:3]  GHR[4:7]      …… 

INT configuration  

 LHR[0:3]  LHR[4:7]  GHR[0:3]  GHR[4:7]      …… 

FP configuration  

  PC[0:3]    LHR[0:3]  GHR[0:3]  GHR[4:7]      ……   PC[0:3]     PC[4:7]     PC[8:11]   PC[12:15]      …… 

SERV configuration  MM configuration  

 
Figure 4: Pre-determined input configurations for different types of workloads. 

3.2. Correlation-directed Adaptation 

Profile-directed adaptation exploits coarse-grain workload behavior (i.e., one configuration for the 
entire run after the workload type is determined). If a workload exhibits significant phase 
behavior1, such a global configuration would fail to fit the changing requirements. To overcome 
such inefficiency, we propose an additional adaptation scheme based on dynamical correlation 
examination and it is named correlation-directed adaptation.  

In correlation-directed adaptation, the strength of correlation is examined at a certain 
execution interval (or a program phase) and the inputs with weak correlation will be replaced 
with those potentially having stronger correlation. For example, if some LHR bits are found with 
weak correlation while GHR bits show stronger correlation, replacing those LHR bits with 
additional GHR bits would be an appealing choice. 

As shown in Figure 3, besides the MUX1, which is used to support profile-directed adaptation, 
there is another multiplexer (MUX2) for each table. The MUX2 fine-tunes the pre-determined 
workload-dependent information vector based on the strength of branch correlation. For each 
weight table, the inputs to its MUX2 include the 4-bit output from MUX1, 4-bit GHR, 4-bit LHR, 
and 4-bit PC. The control bits of MUX2, ci, are initialized so that the 4-bit output from MUX1 is 
selected. Then, after a certain execution interval (or a program phase), the strength of branch 
correlation is examined for the 4-bit information data and those with weak correlation will be 
replaced. In order to measure correlation strength of the 4-bit input to weight table 1, for example, 
all the weights in the row selected by the index1 are read and the summation of each weight (the 
absolute value) will be used as a quantitative measure of the correlation between the 4 
information bits and the current branch instruction. If it turns out that the GHR/PC/LHR bits 
carries the strongest correlation, the 4 information bits with the minimum correlation will be 
replaced with 4 more GHR/PC/LHR bits by setting the control bits of MUX2 of the 
corresponding table. For example, for a branch in a MM benchmark, if its 4 PC bits (e.g., the 

                                                 
1 The distributed CBP traces show little phase behavior given its limited trace length. 
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input to weight table 1) have the strongest correlation while its LHR bits (e.g., the input to weight 
table 2) have the weakest correlation, the input to weight table 2 will be configured as 4 more PC 
bits (e.g., PC[4:7]), replacing the LHR bits. 

In the design shown in Figure 3, each entry in a weight table has its own control signal ci so 
that the input vector can be tuned for each entry. For example, the perceptron corresponding to 
the first entry of the weight table 1 may choose to exploit correlation from 4 PC bits while the one 
corresponding to the second entry exploits correlation from 4 GHR bits. Such flexibility requires 
more hardware resource (2-bit control for each entry) and more complex information feeding 
logic. A more efficient design is to tune the input configuration at the table level so that all the 
entries in the same table will share the same input configuration (i.e., only one ci for each table). 
We call these two adaptation designs as per-entry and per-table correlation-directed adaptation 
and examine their performance impact in Section 5. 

4. Overall Branch Predictor Structure 

For conditional branches with simple taken/not taken patterns, a perceptron predictor is not a good 
candidate due to its complexity and potential latency and power consumption issues. In addition, 
such simple branch patterns could pollute perceptron weights when the same weights are used to 
predict other branches. Therefore, we propose a bias branch predictor and incorporate a loop 
branch predictor to handle these special branches, as shown in Figure 5. 
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predictor
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Figure 5: The overall branch predictor structure. 

The bias predictor is an array of 2-bit FSMs indexed with PC. Each FSM transits from the 
initial state ‘11’ into the state ‘01’ or ‘00’ depending on whether the branch is taken or not taken 
respectively. The state ‘01’ implies the branch is always taken while the state ‘00’ means the 
branch is always not taken. An FSM transits to the state ‘10’ whenever the actual outcome 
disagrees with the bias state. In this case, the final prediction will be made by other predictors. 

The loop branch predictor is a set-associative cache structure and each entry consists of loop 
count, current iteration count (taken count), tag, confidence (increased/decreased when the loop 
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count matches/mismatches), and LRU bits. A branch hits in the loop branch predictor only if there 
is a tag match and the confidence is high. 

The overall prediction priority order is the bias prediction if a branch is biased (i.e., the bias 
state is not ‘10’), the loop branch prediction if the branch hits in the loop predictor, and then the 
prediction from the MAC perceptron predictor with adaptive information processing. 

During update, the bias predictor is updated first. Only if the bias state is 10 (i.e., not biased), 
the loop branch predictor and the MAC perceptron predictor are examined. If the branch hits in the 
loop branch predictor, the MAC perceptron predictor is not updated. In this way, the adverse 
impacts from bias and loop branches upon the MAC perceptron predictor, including weight 
pollution and un-necessary updates, are effectively eliminated. 

4.1. Hardware budget requirements 

With the branch predictor configuration that we proposed for CBP-1, the hardware budget 
requirements are summarized in Table 1.  
Table 1:  Hardware budget. 
 COMPONENT CONFIGURATION COST 

Bias branch predictor 2293 entries   2293 x 2 = 4586 bits.  

Loop branch predictor  24 entries, 8-way set associative  1344 bits 

Information PC, GHR: 100 bits, LHR: 8 bits, 63 entries  32 + 100 + 8 * 63 = 636 bits 

MAC perceptron predictor 
with adaptive information 
processing  

W0 table: 61 entries, 8 bits each 
Other tables’ sizes: 63, 55, 53, 53, 51, 49, 43, 41, 41, 39, 37, 37, 
and 35. Total MAC entries: 597. Each MAC entry has 16 
weights. Each weight has 6 bits. 
Control bits: 2 bits each entry 

 61 * 8 + 
 597 * 16 * 6 + 
 597 * 2 
 = 58994 bits 

Adaptation Logic Interval : 100000 conditional branches   22 bits  

Workload Detector Interval: 10000 instructions and 10000 conditional branches  82 bits 

  Total Cost: 65649 bits 
 

5. Results 

5.1. CBP-1 traces 

Figure 6 shows the prediction accuracy of different branch predictors with the same 8KB 
prediction table size, including a g-share predictor, an MAC perceptron predictor, and our 
proposed predictor with different adaptation schemes, profile-directed adaptation (labeled 
‘profile’), profile-directed with per-table correlation-directed adaptation (labeled 
‘profile+per-table’), and profile-directed with per-entry correlation-directed adaptation (labeled 
‘profile+per-entry’). Compared to the g-share predictor, our proposed adaptive schemes reduce 
the misprediction rate by 47% on average. Compared to the fine-tuned baseline MAC perceptron 
predictor, the improvement from adaptation is close to 10%. As the distributed CBP traces do not 
exhibit strong phase behavior, profile-directed adaptation reaps the most benefit (2.847 
mispredictions per 1K instructions) and correlation-directed adaptation only show small 
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incremental improvements (2.846 and 2.822 mispredictions per 1K instructions for per-table and 
per-entry correlation-directed adaptation respectively). 

Since our overall predictor design contains multiple predictors handling different branches, we 
investigate the contribution of each predictor in Figure 7, which shows the percentage of 
predictions (both correct and incorrect) made by each predictor. It can be seen that the simple bias 
predictor and the loop predictor filter out a significant amount of dynamic branches and effectively 
reduces the aliasing and update cost of the MAC perceptron predictor. On average, among all the 
dynamic predictions, 17.61% (and 0.03%) are correct (and incorrect) predictions made by the bias 
predictor, 16.56% (and 0.03%) are correct (and incorrect) predictions made by the loop predictor, 
and 63.13% (and 2.64%) are correct and (incorrect) predictions made by the MAC perceptron 
predictor with adaptation.    
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Figure 6: Branch misprediction rates on CBP-1 traces. 
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Figure 7: Prediction contribution from individual branch predictors in the overall design. 
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5.2. SPEC2000 benchmarks 

In this experiment, we examine the prediction accuracy of the proposed scheme on SPEC 2000 
CINT and CFP benchmarks [3]. In our simulation, the reference inputs are used. We fast-forward 
the first 500M instructions and simulate the next 1000M instructions. We also assume that the 
workload type (FP or INT) can be detected correctly and the FP/INT configurations profiled 
based on the CBP traces are then used for FP/CINT benchmarks.  

Branch M isprediction Rates

0

2

4

6

8

10

12

14

16

18

bz
ip2 ga

p
gc
c

gz
ip mc

f

pa
rse
r

pe
rl

tw
olf

vo
rte
x vp

r
am
mp art

eq
ua
ke

me
sa

sw
im

wu
pw
ise av

g

m
is

pr
ed

ic
to

ns
 p

er
 1

K
 in

sn

gshare

pro file

pro file+per-table
pro file+per-entry

 
Figure 8: Branch misprediction rates on SPEC 2000 benchmarks. 
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Figure 9: Prediction contribution from individual branch predictors in the overall design. 

 From the misprediction rates that are reported in Figure 8, it can be seen that our proposed 
predictor outperforms the g-share predictor by 35% on average. Another interesting observation 
is that the FP and INT configurations profiled using the CBP traces work well for SPEC 
benchmarks and only little improvements are from the additional per-table and per-entry 
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correlation-directed adaptation. This result is promising since profile-directed adaptation is much 
simpler to implement than correlation-directed adaptation.  

Individual contributions from the bias, loop, and MAC perceptron predictor with adaptation 
are examined in Figure 9 and it can be seen that the bias and loop predictors accurately predicts a 
significant amount of dynamic branches for SPEC 2000 benchmarks, similar to CBP traces. 

6. Conclusions 

This paper takes an untraditional perspective to attack the branch prediction problem: rather than 
a new prediction scheme to better exploit branch correlation, we propose to process the inputs to 
branch predictors to maximize such correlation. An important observation is made from 
perceptron branch predictors that the perceptron weights provide an estimate of the correlation 
strength. Based on such correlation strength, novel adaptive information processing schemes are 
proposed to dynamically re-assemble the input information vector so that it contains only those 
history bits with the strongest correlation. The experiments using CBP traces and SPEC 2000 
benchmarks show that our proposed approach achieves significant improvement on prediction 
accuracy over the competing branch prediction schemes. 
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