Approximate Dynamic Programming (ADP) Methods for Optimal Control of Cardiovascular Risk in Patients with Type 2 Diabetes

Jennifer Mason

PhD Candidate
Edward P. Fitts Department of Industrial & Systems Engineering
North Carolina State University
Raleigh, NC

INFORMS Annual Meeting
Charlotte, NC
November 14, 2011
Collaborators

Brian Denton
Edward P. Fitts Department of Industrial & Systems Engineering
North Carolina State University

Nilay Shah
Department of Health Sciences Research
Mayo Clinic

Steven Smith
Department of Endocrinology
Mayo Clinic

This project was funded in part by the National Science Foundation under grant CMMI-0969885.
Outline

- Diabetes Background
- Markov Decision Process (MDP) for Optimal Control
- Approximate Dynamic Programming Methods
 - Aggregate MDP
 - Basis Function Approximation
- Numerical Results and Conclusions
Chronic Disease Management

- Chronic diseases are the leading cause of death in the U.S. and other countries
- For many chronic diseases there are treatment options to manage the disease and reduce the risk of adverse events
- Optimal control of treatment can prolong lives, improve quality of life, and reduce costs
Diabetes

- 23.6 million people in the U.S. have diabetes
- Two out of three deaths are caused by stroke or coronary heart disease (CHD)
- Blood pressure and cholesterol medications are often part of treatment plans for diabetes patients
Medications

- Blood Pressure Medications
 - Beta Blockers
 - ACE Inhibitors / ARBs
 - Thiazides
 - Calcium Channel Blockers

- Cholesterol Medications
 - Statins
 - Fibrates
Current U.S. Guidelines

- **JNC 7**: Treatment Goal: SBP/DBP < 130/80 mmHg
- **ATP III**: Treatment Goal: LDL < 100 mg/dL

Bounded, Continuous State Space
Markov Decision Process (MDP)

Time Horizon

- $t = \{1, 2, \ldots, T\}$

States

- health states:
 - lipid ratio (LR): $\ell_t^{LR} \in \mathcal{L}_{LR} = [0, \text{LR}^{\text{max}}]$
 - systolic blood pressure (SBP): $\ell_t^{SBP} \in \mathcal{L}_{SBP} = [0, \text{SBP}^{\text{max}}]$

- medication states:
 - $\mathcal{M} = \{m_t = (m_{1,t}, m_{2,t}, \ldots, m_{n,t})| m_{i,t} \in \{0, 1\}\}$

Actions for medication i

$$A(\ell_t^{LR}, \ell_t^{SBP}, m_{i,t}) = \begin{cases} \{i, W_i\} & \text{if } m_{i,t} = 0 \\ \{W_i\} & \text{if } m_{i,t} = 1 \end{cases}$$
Rewards

Societal Perspective:

\[r(\ell_t^{LR}, \ell_t^{SBP}, m_t) = \begin{cases}
R \times q(\ell_t^{\text{Stroke}}, \ell_t^{\text{CHD}}, m_t) \\
- C(\ell_t^{\text{Stroke}}, \ell_t^{\text{CHD}}, m_t) \\
0 & \text{if the patient is alive} \\
0 & \text{otherwise}
\end{cases} \]

Patient Perspective:

\[r(\ell_t^{LR}, \ell_t^{SBP}, m_t) = \begin{cases}
q(m_t) & \text{if the patient is alive} \\
& \text{and has not had any events} \\
0 & \text{otherwise}
\end{cases} \]
Optimality Equations

∀t = 1, ... , T - 1:

\[v_t(\ell_{t}, m_t) = \max_{a \in A(\ell_{t}, m_t)} \left\{ r(\ell_{t}, m_t) + \lambda \int \int_{\ell_{t+1}, m_{t+1}} p^a(\ell_{t+1}, m_{t+1} | \ell_{t}, m_t) v_{t+1}(\ell_{t+1}, m_{t+1}) d\ell_{t+1} d\ell_{t+1} \right\} \]

boundary condition for \(t = T \):

\[v_T(\ell_T, m_T) = \mu(\ell_T, m_T) \]
ADP Approaches

- Uniform Aggregation
- Basis Function Approximation
ADP Approach 1: Uniform Aggregation

Fixed Finite Grid

Systolic Blood Pressure (SBP)

L Maximum SBP
M H
L

L Lipid Ratio (LR)

Maximum LR
ADP Approach 1: Uniform Aggregation

- A mean value is associated with each discrete state

- Example:

\[
g^{LR}(\ell^L_R) = \begin{cases}
\mu(S^L_{1R}) & 0 \leq \ell^L_R \leq UB(S^L_{1R}) \\
\mu(S^L_{2R}) & UB(S^L_{1R}) < \ell^L_R \leq UB(S^L_{2R}) \\
\vdots & \\
\mu(S^L_{qR}) & UB(S^L_{q-1R}) < \ell^L_R \leq LR^{max}
\end{cases}
\]

- The approximate MDP is solved using backwards induction
ADP Approach 1: Uniform Aggregation

State Transition Diagram

No Medications

L₀ → M₀ → H₀ → V₀

Adverse Event or Death
ADP Approach 1: Uniform Aggregation

State Transition Diagram

No Medications

Statins

ACE Inhibitors

Statins + ACE Inhibitors

Adverse Event or Death
ADP Approach 2: Basis Function Approximation

\[\tilde{v}_t(\ell_t^{LR}, \ell_t^{SBP}, m_t) = \sum_{k=1}^{K} \sum_{m_t} w_{t,k,m_t} b_{t,k}(\ell_t^{LR}, \ell_t^{SBP}, m_t) \]

where each basis function \(b_{t,k}(\ell_t^{LR}, \ell_t^{SBP}, m_t) \) is weighted by \(w_{t,k,m_t} \)

- \(b_{t,1}(\ell_t^{LR}, \ell_t^{SBP}, m_t) \): the patient’s annual probability of no CHD event
- \(b_{t,2}(\ell_t^{LR}, \ell_t^{SBP}, m_t) \): the patient’s annual probability of no stroke
ADP Approach 2: Basis Function Approximation

Annual Probability of No CHD Event

- Female, Medium SBP, Low LR
- Female, High SBP, Medium LR
- Male, Medium SBP, Low LR
- Male, High SBP, Medium LR

Patient Age:
- 40
- 41
- 42
- 43
- 44
- 45
- 46

Annual Probability of No CHD Event:
- 0.97
- 0.975
- 0.98
- 0.985
- 0.99
- 0.995
- 1
ADP Approach 2: Basis Function Approximation

Linear Program to Estimate Basis Function Weights

\[
\text{min } z = \sum_{m_t} \sum_{t=1}^{T} \sum_{k=1}^{K} \sum_{\ell_t^{LR}} \sum_{\ell_t^{SBP}} w_{t,k,m_t} \sum_{\ell_{t+1}^{LR}} \sum_{\ell_{t+1}^{SBP}} b_{t,k}(\ell_t^{LR}, \ell_t^{SBP}, m_t) \\
\text{s.t. } \sum_{k=1}^{K} w_{t+1,k,m_{t+1}} b_{t+1,k}(\ell_{t+1}^{LR}, \ell_{t+1}^{SBP}, m_{t+1}) \geq r(\ell_{t+1}^{LR}, \ell_{t+1}^{SBP}, m_{t+1}), \\
\forall t = 1, \ldots, T - 1, a \in A(\ell_t^{LR}, \ell_t^{SBP}, m_t), \ell_t^{LR} \in \mathcal{L}_{LR}, \ell_t^{SBP} \in \mathcal{L}_{SBP}, m_t \in \mathcal{M}, \\
\sum_{k=1}^{K} w_{T,k,m_T} b_{T,k}(\ell_T^{LR}, \ell_T^{SBP}, m_T) \geq \mu(\ell_T^{LR}, \ell_T^{SBP}, m_T), \forall \ell_T^{LR} \in \mathcal{L}_{LR}, \ell_T^{SBP} \in \mathcal{L}_{SBP}, m_T \in \mathcal{M}, \\
w_{t,k,m_t} \geq 0, \forall k = 1, \ldots, K, t = 1, \ldots, T, \forall m_t.
\]
Numerical Experiments

- Comparison of ADP methods
- Comparison of near-optimal policies to international guidelines
Data Sources

<table>
<thead>
<tr>
<th>Input</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transitions among health states</td>
<td>Mayo Clinic EMR and DEMS</td>
</tr>
<tr>
<td>Probabilities of CHD or Stroke</td>
<td>UKPDS Risk Equations</td>
</tr>
<tr>
<td>Probability of death from other causes</td>
<td>CDC Mortality Tables</td>
</tr>
<tr>
<td>Medication Costs and QALY estimates</td>
<td>Health Services Literature</td>
</tr>
</tbody>
</table>
Simulation

- All models were coded in C/C++
- The basis function LP was solved with CPLEX using Concert Technology
- Computation time on a 2.83GHz PC with 8GB of RAM:
 - Simulation: < 10 seconds for each instance
 - Solution to MDP: < 18 minutes
Patient Perspective: Comparison of ADP Methods

Expected QALYs before a stroke or CHD event: (N=60,000)

<table>
<thead>
<tr>
<th></th>
<th>Males</th>
<th>QALYs</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation of Basis Function Policy</td>
<td>68.658</td>
<td>(68.559, 68.758)</td>
<td></td>
</tr>
<tr>
<td>Simulation of Aggregate MDP Policy</td>
<td>68.862</td>
<td>(68.765, 68.959)</td>
<td></td>
</tr>
<tr>
<td>Aggregate MDP Results</td>
<td>68.723</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Females</th>
<th>QALYs</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation of Basis Function Policy</td>
<td>73.161</td>
<td>(73.061, 73.261)</td>
<td></td>
</tr>
<tr>
<td>Simulation of Aggregate MDP Policy</td>
<td>73.610</td>
<td>(73.511, 73.708)</td>
<td></td>
</tr>
<tr>
<td>Aggregate MDP Results</td>
<td>72.974</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Societal Perspective: Male Results

![Graph showing Expected QALYs vs. Discounted Medication and Hospitalization Costs]

- Maximum QALYs
- Optimal Tradeoff Curve
- No Treatment
- Discounted Medication and Hospitalization Costs ($)
- Expected QALYs (yrs.)

Countries: European Union, Joint British, Australia, Canada, US I, US II.
Societal Perspective: Female Results

Expected QALYs (yrs.) vs. Discounted Medication and Hospitalization Costs ($)

- Maximum QALYs
- Optimal Tradeoff Curve
- No Treatment
- Discounts for different regions:
 - European Union
 - Joint British
 - Australia
 - Canada
 - US I
 - US II
Conclusions

- State aggregation is superior to basis function approximation of the value function
- Coordinated treatment of blood pressure and cholesterol in patients with diabetes substantially lowers costs and increases quality-adjusted lifespan
Future Work

- Further experimentation with basis functions to achieve better policies

- Identification of easy-to-implement and near-optimal heuristics
Questions?

Jennifer E. Mason
PhD Candidate
Edward P. Fitts Department of Industrial & Systems Engineering
North Carolina State University
jemason2@ncsu.edu
Parameters

<table>
<thead>
<tr>
<th>Medication</th>
<th>Annual Cost</th>
<th>QALY Decrement</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE Inhibitors / ARBs</td>
<td>$48</td>
<td>0.005</td>
</tr>
<tr>
<td>Thiazides</td>
<td>$48</td>
<td>0.005</td>
</tr>
<tr>
<td>β Blockers</td>
<td>$48</td>
<td>0.005</td>
</tr>
<tr>
<td>Calcium Channel Blockers</td>
<td>$866</td>
<td>0.005</td>
</tr>
<tr>
<td>Statins</td>
<td>$212</td>
<td>0.003</td>
</tr>
<tr>
<td>Fibrates</td>
<td>$652</td>
<td>0.003</td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial hospitalization for stroke (C^S)</td>
<td>$13,204</td>
<td>Nationwide Inpatient Sample 2006</td>
</tr>
<tr>
<td>Initial hospitalization for CHD (C^{CHD})</td>
<td>$18,590</td>
<td>Nationwide Inpatient Sample 2006</td>
</tr>
<tr>
<td>Follow-up for stroke (CF^S)</td>
<td>$1,664</td>
<td>Thom et al. 2006</td>
</tr>
<tr>
<td>Follow-up for CHD (CF^{CHD})</td>
<td>$2,576</td>
<td>Russell et al. 1998; Thom et al. 2006</td>
</tr>
<tr>
<td>Willingness-to-pay Factor (R_0)</td>
<td>$100,000</td>
<td>Rascati 2006</td>
</tr>
<tr>
<td>Discount Factor (λ)</td>
<td>0.97</td>
<td>Gold et al. 1996</td>
</tr>
<tr>
<td>CHD decrement (d^{CHD})</td>
<td>0.07</td>
<td>Clarke et al. 2002; Tsevat et al. 1993</td>
</tr>
<tr>
<td>Stroke decrement (d^S)</td>
<td>0.21</td>
<td>Tengs et al. 2001; Clarke et al. 2002</td>
</tr>
</tbody>
</table>

Source:
- Nationwide Inpatient Sample 2006
- Thom et al. 2006
- Russell et al. 1998
- Rascati 2006
- Gold et al. 1996
- Clarke et al. 2002
- Tsevat et al. 1993
- Tengs et al. 2001
- Tengs et al. 2003