Evaluating the Role of Aspirin for Cardiovascular Risk Management for Patients with Type 2 Diabetes

Jennifer E. Mason
PhD Student
Edward P. Fitts Department of Industrial and Systems Engineering
NC State University, Raleigh, NC

33rd Annual Meeting of the Society for Medical Decision Making
October 25, 2011
Collaborators

Brian Denton, PhD, NC State University
Yuanhui Zhang, NC State University
Nilay Shah, PhD, Mayo Clinic
Steve Smith, MD, Mayo Clinic

Supported by the National Science Foundation (CMMI-0969885)

Disclosure: No Conflict of Interest
Diabetes

- The American Diabetes Association (ADA) estimates 25.8 million people have diabetes in the U.S.
 - Over 8% of the population
 - 90-95% have type 2 diabetes

- Two out of three people with diabetes will die from either stroke or coronary heart disease (CHD)
Guidelines for Aspirin Use

- Disagreement in appropriate guidelines
 - ADA/AHA/ACCF – based on 10-year CHD risk, specifically for diabetes patients
 - USPSTF – not specifically for diabetes patients

- Separate from guidelines for blood pressure control (JNC 7) and cholesterol control (ATP III)

- Uncertainty about age and gender specific impact of aspirin
Study Aims

Determine which patients should initiate aspirin and when it should be initiated

Compare model-based treatment to current guidelines
Markov Decision Process Model

- **Ages**
 - 40 to 100
 - Annual Treatment Decisions

- **Gender**
 - Differences in analysis determined by transition probabilities

- **States**
 - TC, HDL, and SBP (each L, M, H, or V), HbA1c
 - Smoking status
 - History of CHD event or stroke
 - Medication status

- **Decisions**
 - At each year, a decision is made to initiate one or more medications
Medications

- Aspirin

- Blood Pressure Medications
 - ACE Inhibitors
 - Beta Blockers
 - Thiazides

- Cholesterol Medications
 - Fibrates
 - Statins
MDP Model

- Reward Function

\[r(l, m) = R_0 \times \text{QALY}(l, m) - \text{Costs}(l, m) \]

\[R_0 = \text{\$ reward for one QALY} \]

- Objective: Maximize Rewards for QALYs minus costs before the patient’s first event
Decision Process

- **Initiate or Delay Treatment?**
 - Aspirin
 - Statins
 - Fibrates
 - Thiazides
 - ACE Inhibitors
 - β Blockers

- Expected Benefit of Treatment
- Change in Health Status
- Aspirin
- Statins
- Fibrates
- Thiazides
- ACE Inhibitors
- β Blockers

- Expected Benefit of Treatment
- Change in Health Status
Data

<table>
<thead>
<tr>
<th>Model Input</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probabilities among health states</td>
<td>Mayo EMR and DEMS<sup>1</sup></td>
</tr>
<tr>
<td>Probability of death from other causes</td>
<td>CDC Mortality Tables<sup>2</sup></td>
</tr>
<tr>
<td>Probability of stroke and CHD events</td>
<td>UKPDS Models<sup>3</sup></td>
</tr>
</tbody>
</table>

¹ Gorman et al. 2000.

Costs and Disutilities

R₀ = $100,000¹

<table>
<thead>
<tr>
<th>Medication</th>
<th>One Year Cost</th>
<th>Disutility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin</td>
<td>$24</td>
<td>0.001</td>
</tr>
<tr>
<td>Statins</td>
<td>$212</td>
<td>0.003</td>
</tr>
<tr>
<td>Fibrates</td>
<td>$652</td>
<td>0.003</td>
</tr>
<tr>
<td>ACE Inhibitors</td>
<td>$48</td>
<td>0.005</td>
</tr>
<tr>
<td>Beta Blockers</td>
<td>$48</td>
<td>0.005</td>
</tr>
<tr>
<td>Thiazides</td>
<td>$48</td>
<td>0.005</td>
</tr>
</tbody>
</table>

¹ Rascati (2006)
Aspirin Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Base Case (Range)¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative Risk of Stroke</td>
<td>0.95 (0.85 – 1.06)</td>
</tr>
<tr>
<td>Relative Risk of CHD</td>
<td>0.82 (0.75 – 0.90)</td>
</tr>
<tr>
<td>Risk of Gastrointestinal Bleeding</td>
<td>0.0003 (0.0002 – 0.0005)</td>
</tr>
</tbody>
</table>

¹ Antithrombotic Trialists’ Collaboration (2009)
Results

Compare performance of model-based guidelines to ADA/AHA/ACCF guidelines
Optimal Sequence of Treatment

- All patients begin statins at age 40

- Males also begin aspirin at age 40

- Females begin aspirin between age 40 and age 48 depending on the patient’s risk

- Sensitivity analysis shows that males should start aspirin as late as age 47 and females should start aspirin as late as age 54
Model-Based Treatment vs. Guidelines

Discounted Expected Medication Costs Before an Event

Expected QALYs from 40 Before an Event

- M: Model-Based Guidelines
- F: Model-Based Guidelines
- M: No Aspirin
- F: No Aspirin
- M: ADA Guidelines
- F: ADA Guidelines
Model-Based Treatment vs. Guidelines

Discounted Expected Medication Costs Before an Event

Expected QALYs from 40 Before an Event

- M: Model-Based Guidelines
- F: Model-Based Guidelines
- X: No Aspirin
- M: ADA Guidelines
- F: ADA Guidelines
Sensitivity Analysis

Change in QALYs from Base Case

Stroke Risk Reduction (±11%)

CHD Risk Reduction (±9%)

Gastrointestinal Bleeding Risk (-33%, +66%)

Male
Female
Sensitivity Analysis

Change in Costs from Base Case ($)

Stroke Risk Reduction (±11%)

CHD Risk Reduction (±9%)

Gastrointestinal Bleeding Risk (-33%, +66%)

-500 -400 -300 -200 -100 0 100 200 300 400 500

Male
Female
Conclusions

- Model-based treatment results suggest all patients should have aspirin as part of prevention of cardiovascular events.

- Statins are a more effective first-line treatment for some patients.

- Current guidelines result in fewer QALYs than model-based treatment with an increase in costs for females and a decrease in costs for males.
Future Work

- Incorporate patient cohorts from more than one health system

- Include analysis with clinical data to model other races or ethnicities

- Explore the effects of different risk reduction factors based on age and gender
Jennifer Mason
jemason2@ncsu.edu

THANK YOU
Consider aspirin therapy for primary prevention in those with type 1 or type 2 diabetes at increased cardiovascular risk (10-year risk >10%)

Aspirin should not be recommended for those with low cardiovascular risk (10-year risk <5%)

Clinical judgment is required for those with 10-year cardiovascular risk between 5-10%

No differentiation in guidelines by gender
USPSTF Guidelines

- Recommend aspirin use for primary prevention among:
 - Men 45-79 years when CVD risk (MIs prevented) outweighs harm
 - Women 55-79 years when CVD risk (Strokes prevented) outweighs harm

<table>
<thead>
<tr>
<th>Men: 10-year CHD risk</th>
<th>Women: 10-year stroke risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 45-59 years</td>
<td>Age 45-59 years</td>
</tr>
<tr>
<td>≥ 4%</td>
<td>≥ 3%</td>
</tr>
<tr>
<td>Age 60-69 years</td>
<td>Age 60-69 years</td>
</tr>
<tr>
<td>≥ 9%</td>
<td>≥ 8%</td>
</tr>
<tr>
<td>Age 70-79 years</td>
<td>Age 70-79 years</td>
</tr>
<tr>
<td>≥ 12%</td>
<td>≥ 11%</td>
</tr>
</tbody>
</table>
Summary of the Evidence

<table>
<thead>
<tr>
<th>Author</th>
<th>Number of studies (patients)</th>
<th>Relative Risk on CV Events (95% CI)</th>
<th>Effect on Bleeding</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bartolucci (2011)</td>
<td>9 (~90,000)</td>
<td>0.87 (0.80-0.93)</td>
<td>0.3-4.5%</td>
<td>All</td>
</tr>
<tr>
<td>Butalia (2011)</td>
<td>7 (~11,000)</td>
<td>0.91 (0.82-1.00)</td>
<td>2.50 (0.77-8.10)</td>
<td>Diabetes</td>
</tr>
<tr>
<td>Stavrakis (2011)</td>
<td>5 (~7,400)</td>
<td>0.89 (0.70-1.13)</td>
<td>3.02 (0.48-18.86)</td>
<td>Diabetes</td>
</tr>
<tr>
<td>Younis (2010)</td>
<td>6 (~7,300)</td>
<td>0.90 (0.78-1.05)</td>
<td>2.49 (0.70-8.84)</td>
<td>Diabetes</td>
</tr>
<tr>
<td>Zhang (2010)</td>
<td>7 (~12,000)</td>
<td>0.92 (0.83-1.02)</td>
<td>2.46 (0.70-8.61)</td>
<td>Diabetes</td>
</tr>
<tr>
<td>Deberardis (2009)</td>
<td>5 (~9,600)</td>
<td>0.90 (0.81-1.00)</td>
<td>2.50 (0.76-8.21)</td>
<td>Diabetes</td>
</tr>
<tr>
<td>ATTC (2009)</td>
<td>6 (~95,000)</td>
<td>0.82 (0.75-0.90)</td>
<td>1.54 (1.30-1.82)</td>
<td>All</td>
</tr>
</tbody>
</table>
Complexity

- Total number of states:

\[
4^3 \times 2^6 \times 2^2 \times 40 = 655,360
\]

- Solved model using dynamic programming techniques

- Model instances solved in less than 18 minutes on a 2.83GHz PC with 8GB of RAM
Sensitivity Analysis (Females)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Change in QALYs</th>
<th>Change in Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke Risk Reduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Bound</td>
<td>+ 0.212</td>
<td>+ $175.93</td>
</tr>
<tr>
<td>Upper Bound</td>
<td>– 0.228</td>
<td>– $163.09</td>
</tr>
<tr>
<td>CHD Risk Reduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Bound</td>
<td>+ 0.215</td>
<td>– $341.38</td>
</tr>
<tr>
<td>Upper Bound</td>
<td>– 0.230</td>
<td>+ $423.20</td>
</tr>
<tr>
<td>Gastrointestinal Bleeding Probability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Bound</td>
<td>+ 0.057</td>
<td>+ $50.73</td>
</tr>
<tr>
<td>Upper Bound</td>
<td>– 0.104</td>
<td>– $186.02</td>
</tr>
</tbody>
</table>
Sensitivity Analysis (Males)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Change in QALYs</th>
<th>Change in Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke Risk Reduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Bound</td>
<td>+ 0.232</td>
<td>+ $232.66</td>
</tr>
<tr>
<td>Upper Bound</td>
<td>− 0.247</td>
<td>− $129.16</td>
</tr>
<tr>
<td>CHD Risk Reduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Bound</td>
<td>+ 0.323</td>
<td>− $388.95</td>
</tr>
<tr>
<td>Upper Bound</td>
<td>− 0.360</td>
<td>+ $305.11</td>
</tr>
<tr>
<td>Gastrointestinal Bleeding Probability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Bound</td>
<td>+ 0.048</td>
<td>+ $57.64</td>
</tr>
<tr>
<td>Upper Bound</td>
<td>− 0.094</td>
<td>− $60.69</td>
</tr>
</tbody>
</table>