SUPPORTING INFORMATION

Effect of Protein-like Copolymers Composition on the Phase Separation Dynamics of a Polymer Blend: A Monte Carlo Simulation

Ravish Malik, Carol K. Hall, Jan Genzer

1. Normalization constant G for the scaling function $F(x)$

The scaling function $F(x)$ is described by the following equation:

$$S(q, t) = \left[1 / q_i(t)\right]^3 F(x) / G$$

where $S(q, t)$ is the collective structure factor, $q_i(t)$ is the first moment of the structure factor, $x = q / q_i(t)$ is the reduced scattering vector, and G the normalization constant as defined by the following equation:

$$G = (\pi \sum_q q^2 S(q, t))^{-1} L$$

where L is the length of the simulation box. Figure S1 displays the dependence of G on the PLC compatibilizer composition x_c at various stages of phase separation. From the data, G is independent of the PLC compatibilizer composition and depends on phase separation time. Specifically, with increasing time G decreases initially rapidly and tends to approach a constant value at long simulation times. Since G is the inverse of the second order moment (i.e. the variance or spread) of the structure factor, a decreasing G with increasing phase separation time signifies the increase of heterogeneity of the phase separated domains for the ternary A/B/C-plc-D blend as expected.
Figure S1. Evolution of the normalization constant G with phase separation time for the ternary A/B/C-\textit{plc}-D blend with varying PLC composition x_c.

2. Scaling function $F(x)$

In the manuscript we show that the scaling law as described by Eq. (1) is universal as it holds for the ternary A/B/C-\textit{plc}-D blend (irrespective of the PLC composition x_c) during the late stages of phase separation, and the scaling function $F(x)$ becomes independent of time during the late stages of phase separation. To elaborate upon this point further in Figure S2 we plot $F(x)$ for various PLC compositions, x_c, at various phase separation times. Clearly for the ternary A/B/C-\textit{plc}-D blend with a given PLC composition, $F(x)$ becomes universal only towards the end of the simulation and not at earlier phase separation times, and this behavior holds irrespective of the PLC copolymer composition.
Figure S2. Evolution of the scaling function $F(x)$ with phase separation time for the ternary A/B/C-plc-D blend with PLC with various compositions x_c.

The data in Figure S3 illustrate that plotting $F(x)$ at various phase separation times collapses the functions onto unique master plots for all PLC compositions x_c.
Figure S3. Evolution of the scaling function $F(x)$ for the ternary A/B/C-plc-D blend with PLC having compositions x_c for various phase separation times.