
IEEE TRANSACTIONS ON GAMES 1

Perceptual Experience Management

Justus Robertson1 and R. Michael Young2, Senior Member, IEEE
1Department of Computer Science, North Carolina State University, Raleigh, NC 27695 USA

2School of Computing, University of Utah, Salt Lake City, UT 84112 USA

In automatically generated interactive narratives with strong story structure there is often a tension between player choice
and author constraints. This tension arises when the player contradicts a story the system is in the process of telling. When this
happens there are two options available to an interactive narrative storyteller that preserve the author’s intentions. The first,
called accommodation, finds a new story that matches the player’s action while preserving author constraints. The second, called
intervention, removes unwanted effects from the player’s action. Neither of these alternatives are ideal. For accommodation, a new
story is not always available. For intervention, the player could notice the inconsistent effects of their actions. In this paper we
present a new approach to mediating between player choice and authorial constraints, called perceptual experience management,
which mitigates drawbacks of both accommodation and intervention by incorporating a model of player knowledge into the strong
story experience management process. This model is used to widen the space of possible accommodations and constrain the space
of possible interventions to better balance author control and player choice. These two strategies are implemented in the General
Mediation Engine, an experience manager capable of procedurally generating and revising a game world.

Index Terms—Interactive Narrative, Procedural Content Generation, Narrative Generation, Experience Management

I. INTRODUCTION

NARRATIVE is one way humans structure and understand
the world around us. One way to represent narrative is

as a series of events, performed by story characters, that plays
out in a story world. An interactive narrative (IN) is a story
whose events are influenced by an outside participant able
to manipulate world states or story characters. In automated
strong story IN systems [1], a central artificial agent generates
and adapts an interactive story around the actions of an outside
participant. When the participant controls a story character in
these systems, they may act contrary to the actions prepared
for the character in the script generated by the author agent.
This tension between player choice and authorial control is
called the the boundary problem [2]. One way to overcome the
boundary problem is to create a branching story that accounts
for each sequence of actions the player could take.

Creating one series of interesting narrative events is a hard
problem that requires time to plan and execute. The amount
of material an author must generate to create an interesting
story is called the authorial burden. One way to model a
branching story is as a tree of overlapping linear stories that
branches for each decision the player can make [3]. Each
unique event sequence in the branching story, represented as
a path through its tree data structure, increases its authorial
burden. If an interactive narrative tree branches uniformly
by two unique choices, then the tree’s authorial burden will
increase exponentially by a power of two for each choice
layer it contains. This exponential increase in content for
authoring interactive narratives limits the size and scope of
story experiences human authors can create on their own. One
way to mitigate the branching story authoring burden is to
automatically create interactive narrative trees.

A process called planning can automatically construct linear
stories with interesting narrative properties, like intentional

Corresponding author: Justus Robertson (email: jjrobert@ncsu.edu)

character actions [4] and conflict [5]. The planning process
takes as input a planning problem and produces a solution
plan. A planning problem describes what exists in a world,
how the world functions when agents take action, and how the
world should be configured at the end of the plan. A solution
plan is any series of actions taken by agents in the world that
begins from the problem’s initial configuration and produces
a goal state. Through planning, the authorial burden of story
generation can be reduced from authoring sequences of events
to defining a story world and sets of goal conditions.

A process called mediation [6] generates branching IN trees
through two subprocesses: accommodation and intervention.
Mediation begins with a planning problem and produces an
initial solution that serves as a path through the IN tree.
Mediation then analyzes the plan to find every course of action
the participant could take that would prevent the goal state
from being achieved and creates a new planning problem for
each action. Each solution plan serves as a new branch of
the tree should the player decide to take the alternate action.
This process is recursively invoked until no alternate course of
action remains. This process, called accommodation, expands
the branches of IN trees. One drawback to this solution is that
not all planning problems can be solved and the participant
could follow branches where no valid storyline exists.

An alternative to accommodation, called intervention, pre-
vents new IN tree branches from being formed. It does this by
temporarily changing how a participant’s action transforms the
story world such that it no longer contradicts the author’s goals
and does not break the current story. This method is useful
when the player takes an action that cannot be accommodated.
One drawback to intervention is that the participant may notice
the world responds differently to their actions depending on
the situation. This realization may break the user’s immersion
by making apparent a storyteller is at work behind the scenes
changing game rules at the expense of player agency.

In this paper, we present a method called perceptual experi-

IEEE TRANSACTIONS ON GAMES 2

ence management that better mediates between player choice
and author control by increasing the number of branches
accommodation produces by widening the number of solution
plans available to the planner. This new class of branches
are generated by changing past story events while ensuring
modifications are consistent with the player’s experience and
removing interventions that contradict the player’s experience.
These new branches allow the player to take more choices that
are consistent with author constraints. These capabilities are
implemented in a game engine that procedurally generates its
interface based on the configuration of the underlying declar-
ative story world state. This procedural content generation
(PCG) pipeline allows the mediator to dynamically revise
world states and mechanics to benefit author goals without
the player realizing the story world has changed.

II. RELATED WORK

The related work is divided into four sections: planning
and narrative generation, interactive narrative generation, alibi
generation, and procedural content generation.

A. Planning and Narrative Generation

One way to view narrative is as a series of logically and
chronologically connected events performed by story charac-
ters and presented to an audience through some medium [7].
Planning is one way stories can be represented and gener-
ated [8]. A standard way of modeling planning problems
is with with an action language called PDDL [9] (Planning
Domain Description Language). One problem with planning
as narrative generation is not all sequences of events are nec-
essarily interesting stories. One open research question is how
to reason about or identify interesting stories. Intentional plan-
ning [4], [10], [11] adds narrative reasoning to the planning
process by expanding its PDDL input to include subjective
goals for individual characters. These goals allow characters to
only act when it is according to their interests. This additional
layer of reasoning allows the algorithm to exclude stories
where characters behave erratically or irrationally. Another
algorithm, CPOCL [12], is an iteration on intentional planning
that allows and identifies conflict between characters in story
plans. A planner called Glaive [5] is a state space planner
based on Fast-Forward [13] that produces plans equivalent to
CPOCL. Our framework finds linear stories with Glaive as
well as non-narrative planners like Fast Downward [14].

B. Interactive Narrative Generation

Approaches to generating interactive narratives can be clas-
sified along three dimensions: virtual characters, authorial in-
tent, and player modeling [1]. These three dimensions classify
systems based on how much freedom character agents have to
act on their own versus how much control a central storyline
has, whether the story is generated by an algorithm, and to
what extent the storyline adapts to individual players.

One popular form of interactive storytelling is the Choose
Your Own Adventure [15] (CYOA) book series. At the bottom
of each CYOA page the book prompts the reader with a

decision where each choice option corresponds to a page num-
ber. CYOAs are strongly authored and provide no character
autonomy. On the other side of the spectrum from CYOAs,
emergent narrative [16] systems, like FearNot! [17], take an
automated, decentralized approach to IN. Emergent systems
have high character autonomy and high automation. These
systems tell stories through unscripted interactions between
a user and autonomous virtual characters.

Between CYOAs and emergent narratives are systems like
Façade [18]. Façade is a hybrid system that balances plot
control with autonomous agents and authored content with
automation. In Façade, the player assumes the role of a
dinner guest and interacts with a virtual couple as they work
through marital problems. The game’s character behaviors are
written with a reactive planning system, ABL, which is an
iteration on the agent behavior architecture pioneered by the
OZ Project [19] that organizes NPC behavior into story beats.

Our framework controls interaction using a central au-
tomatically generated script. The framework descends from
Mimesis [20], a narrative control system integrated with the
Unreal Tournament (UT) engine. Mimesis creates plans that
correspond to actions virtual characters take in the UT envi-
ronment. Mimesis uses mediation [6] to adapt its plan to player
actions in the game. The data structures mediation creates to
adapt its plan, called mediation trees, are representationally
equivalent to a CYOA [3], but consist of stories that are
automatically constructed with a planner.

Other plan-based systems have been created since Mimesis.
ASD [21] is a mediation framework that decouples itself from
any one game engine with an API that allows its mediator to
sense an external game environment [22]. ASD moves closer
to Façade’s mixed story and character autonomy system by
decoupling character control from the current plan. Another
system, The Merchant of Venice [23], allows players to make
interventions that change how characters behave. Finally, the
PAST [24] system is built on the ASD framework and uses
real-time planning to select between stories on the fly based
on a predicted player type of the interactor.

C. Alibi Generation

Our framework increases the branching factor of mediation
trees by taking advantage of their incomplete knowledge of the
story world to create alibis. Alibis were first used by Sunshine-
Hill [25] to make NPCs in large, sandbox worlds appear
intelligent for relatively little computational cost. The system
controls NPC actions according to a random distribution and
then destroys them once they leave the player’s area. However,
if the player pays attention to an NPC, the system creates an
alibi that explains the current behavior and the character is
controlled according to the alibi’s distribution.

Similar to alibi generation, Initial State Revision (ISR) [26]
allows narrative planners to dynamically reconfigure the initial
state of a planning problem in order to better facilitate story
creation. Initial state literals can be set to true or false, like
in a normal PDDL problem, but can also be set to unde-
termined. An emergent narrative system, called the Virtual
Storyteller [27], uses a concept called late commitment that is

IEEE TRANSACTIONS ON GAMES 3

similar to initial state revision. Late commitment is a feature
where story characters can improvisationally change the state
and rules of the story world simulation.

In order for our framework to take advantage of a player’s
incomplete knowledge of their environment, it needs a theory
to predict what story characters observe and know about their
world. The framework uses a microtheory [28] to create and
maintain its model of player knowledge. A microtheory is a
modular way to specify a model of some domain that can later
be expanded or substituted for a more complete theory.

D. Procedural Content Generation

The final component of the framework is a procedural
content generation (PCG) pipeline that creates a visual in-
terface for the interactive narrative plan trees generated by
mediation. Other systems have procedurally generated game
world layouts that support a given narrative plan [29] and
used planning models to procedurally generate game me-
chanics [30]. This system uses PCG to automatically create,
configure, and maintain virtual worlds based on a PDDL
representation to support story alibis in the game world.

III. PROBLEM DESCRIPTION

This section defines a strong story interactive narrative prob-
lem that allows for multiple initial and goal states, multiple
world mechanics in the form of operator libraries, and partial
player knowledge of the story world.

A. World Representation and Dynamics

A strong story IN is an interactive story where non-player
characters are controlled according to a narrative model.
Interactive stories take place in a story world. In our model,
story worlds consist of locations, characters, and objects,
represented by PDDL constants. Characters are agents that
act and effect change in the story world. A player is a special
character controlled by a human participant. Character actions
are represented by instantiated, fully ground PDDL operators.
An operator is a tuple 〈p, e, b〉 of preconditions p, effects e,
and bindings b that map variables to constants. We refer to
some operator o’s preconditions as po, its effects eo, and its
bindings bo. Character actions are represented by fully ground
operators. An action is called an instantiation of its abstract
operator. If an action’s preconditions hold in a given state, the
action is enabled. Actions have deterministic effects.

All actions are performed by story characters. When action
a is carried out by an agent g, we say g performs a and
a’s actor is g. Together, a story world state and an operator
library describe a state transition system connected by enabled
actions. In our system, players always have the ability to take
enabled actions. Transition systems are represented with the
tuple 〈s, ω〉, where s is a state and ω is a set of operators.
When an enabled action a is performed by an agent g in state
s it produces a successor state s′, where each ground atomic
formula in s′ matches s unless it is updated by an effect in ea.
We call a sequence of enabled actions and their corresponding
successors in a transition system a trajectory. We refer to the

sequence of actions in a trajectory t as αt and the sequence of
states in a trajectory σt. A trajectory reaches the final state in
its sequence. Planning is a search for a trajectory that reaches
a state where all goal conditions are enabled.

B. Interactive Narrative Planning
A planning problem describes a set of trajectories through

a transition system to a set of goal states. Planning problems
are comprised of a state transition system, which is an initial
state and set of operators, and a set of goal conditions. Goal
conditions are literals that must be true when the story ends.
Problems are represented 〈i, γ, ω〉 where i is the initial state
description, γ is the goal conditions, and ω is the set of
operators. A plan is a solution to a planning problem. It is
a trajectory t = (s0, ..., sn) through a state transition system
〈i, ω〉 where s0 = i and γ ∈ sn. A solvable trajectory
is any trajectory from which a goal state can be reached
by adding a further sequence of enabled actions. If a story
world can be modeled as a transition system and interesting
narrative properties can be specified by a set of goal conditions
then story generation can be automated as planning. However,
interactive narrative systems must also account for alternate
courses of action that could be taken by a human participant.

In interactive narrative planning, one or more of the char-
acters acting in the transition system is controlled by a
human player. Given freedom to act, players may disrupt the
system’s plan by taking enabled actions that contradict the
story trajectory. The goal of interactive narrative generation
is to plan contingencies for deviations a player may perform.
Our interactive narrative problem definition allows for multiple
initial states, similar to Initial State Revision [31], multiple
goal states, similar to ASD’s fourth tier of replanning [21],
and multiple operator sets, which can be used to implement
intervention. Our interactive narrative problem is represented
〈I,G,O〉 where I = {i0, i1, ..., in} is a set of initial
states, G = {γ0, γ1, ..., γn} is a set of goal states, and
O = {ω0, ω1, ..., ωn} is a set of operator sets.

For each interactive narrative problem a set of actions,
trajectories, solvable trajectories, states, and plans can be
derived. These sets bound what events, states, and solutions
can occur during interaction. An interactive narrative’s action
set, A, consists of every valid binding of each operator
o ∈ ω ∈ O using every combination of constants in each
i ∈ I . An interactive narrative’s trajectory set, T , consists of
all possible trajectories from each i ∈ I using each ω ∈ O.
The set of trajectories describes every possible way the state
transition systems bound by the problem can evolve over time.
An interactive narrative’s solvable trajectory set, V , consists
of all solvable trajectories from each i ∈ I using each ω ∈ O
to every possible goal state containing a γ ∈ G. The set
of solvable trajectories describes every possible sequence of
actions from which a goal state can be reached. An interactive
narrative’s state set, S, consists of all possible states reached
by some trajectory t ∈ T . The set of states describes every
possible encounterable state. Finally, An interactive narrative’s
plan set, P , consists of all trajectories that reach a goal state.

Interactive narratives do not exist in isolation, they are
meant to be performed with a player in an interactive envi-

IEEE TRANSACTIONS ON GAMES 4

ronment. An interactive narrative environment can be defined
as an interface that exposes the state transition system defined
by an interactive narrative problem to a player.

C. Interactive Narrative Play

One way to conceptualize the possible ways a state transi-
tion system can evolve over the course of an interactive nar-
rative is to enumerate its trajectories as a tree. An interactive
narrative’s world tree, w, is a tree whose vertices are states in
S and edges are actions in A that correspond to a single set
of operators ω ∈ O. The root of the tree is some initial state
i ∈ I . The outgoing edges of any vertex s is the set of actions
α ∈ A that correspond to ω and are enabled in s. Edges in
w correspond to some action α and lead from a predecessor
state s to a successor state s′ = ea ∪ s. A path from the root
of the tree to any vertex is equivalent to a trajectory t ∈ T .
A fully expanded world tree represents every path through the
state transition system 〈i, ω〉, i ∈ I, ω ∈ O.

There is a world tree for every combination of initial states
and operator libraries in the interactive narrative problem. An
interactive narrative’s collection of world trees, called a world
forest, W , is a graph containing all its possible world trees,
W = 〈I,O〉 = {〈i0, ω0〉, 〈i0, ω1〉, ..., 〈in, ωn〉}. An interactive
narrative’s world forest will contain a unique tree for every
transition system created by an initial state-operator library
pairing 〈i, ω〉 specified by the IN problem. Gameplay is the
iterative navigation of a world tree w in the world forest of an
interactive narrative problem that begins at the root of w and
moves downward along edges to successor states as actors take
enabled actions according to a pre-established turn ordering.
During gameplay, the world history is the trajectory taken
through the world tree. Gameplay’s current state is the one
reached by the world history trajectory.

Interactive narratives require participation from a player.
The system must offer an interface to expose state configu-
rations and allow the player to take enabled actions in order
to provide gameplay. A game world is an environment that
provides an interface for players to act as agents and perform
gameplay on a world tree w. The game world exposes a
current state s and allows players to take enabled actions that
correspond to outgoing edges of s in w. Clients may not have
complete knowledge of the story world during gameplay. This
incomplete knowledge can be used to further the system’s
goals. The final component of the system definition is a model
of what characters observe as they interact in the game.

D. Agent Knowledge

Most story worlds are only partially observable to their char-
acters, so we track character knowledge with a microtheory. A
microtheory is an extensible model of some domain that can
be changed or replaced without affecting the overall system.
Building a robust model of how characters come to know the
world around them is outside the scope of this system, so we
use a microtheory to predict character knowledge.

The current microtheory is a set of rules that asserts
characters observe all actions and the state of all objects they
are co-located with. This microtheory does not model more

intricate details of psychology like the distinction between
knowledge and belief or between an event or object’s visibility
and whether it is actually observed. However, a microtheory’s
rules can be extended or replaced without affecting the overall
system’s use of the model. The current model is overly-
protective of possible player observations, but a more robust
model can be easily substituted in at a later time to more
accurately represent what a player knows and give the system
more control.

A knowledge microtheory is a collection of axioms Mt that,
given a history h and an agent g, describe a subset of actions
in αh and a subset of atomic formula in each s ∈ σh that g
has observed. The particular axioms of Mt defines a trajectory
for each agent participating in the interactive narrative. During
gameplay, an agent g’s knowledge is a trajectory kg that
describes what g knows about the world history h given a
knowledge microtheory Mt. kg is a subset of h where any
atomic formula or action determined by Mt to be unobserved
by g is substituted with ∅. An agent’s knowledge of the world
history describes a superposition of possible trajectories that
may have occurred. During gameplay, an agent g’s world
history superposition is a set, Hg , of trajectories that could
possibly be the world history from an agent g’s perspective
according to Mt. A trajectory t ∈ T belongs to Hg if for
every si ∈ σt and s′i ∈ σkg

, s′i ⊂ si and a′i ∈ αkg
, ai = a′i

or a′i = ∅. There could be trajectories in Hg that correspond
to paths through multiple trees in W if the agent has limited
knowledge of h’s initial state or operator library.

Any trajectory that belongs to an agent’s superposition is
consistent with what the character knows according to the
microtheory. A trajectory t is consistent with an agent g’s
knowledge if t ∈ Hg . The trajectories in Hg describe a set
of possible world states the agent g could exist in. During
gameplay, an agent g’s world state superposition is a set
Sg = {s0, s1, ..., sn} of states that could possibly be the
current world state from an agent g’s perspective according to
Mt. A state s ∈ S belongs to Sg if it is reached by a trajectory
t ∈ Hg . Given the world history superposition of every player
participating in the interactive narrative, the system’s task of
maintaining a solvable trajectory can be defined.

E. Perceptual Experience Management
A trajectory is both solvable and consistent if a goal state

can be reached from the trajectory and the trajectory belongs in
the world history superposition of an agent. During gameplay,
a consistent and solvable trajectory for agent g is any trajectory
t where t ∈ V,Hg . This set of consistent and solvable
trajectories for an agent g during gameplay is referred to as
V Hg . The task of a perceptual experience manager is to ensure
that each player has at least one solvable trajectory consistent
with their observations. In other words, for every player agent
g ensure V Hg 6= ∅. The next section presents ensuring that
V Hg 6= ∅ holds in more situations by allowing interactive
narrative systems to compute all trajectories in Hg .

IV. MEDIATION FRAMEWORK

This section describes a framework that builds world trees
from an interactive narrative problem for a single player,

IEEE TRANSACTIONS ON GAMES 5

exposes world tree data structures through a PCG interface,
and transitions players between world histories to reach goals.

The last section formally defines the task of automated,
strong story interactive narrative systems as ensuring at all
times during gameplay, for all players g, V Hg 6= ∅. The sec-
tion defines this task in terms of abstract sets. In practice, these
sets are large and cannot be fully generated. The first hurdle
to overcome when working towards solving the interactive
narrative task is to find trajectories that belong in V Hg without
expanding all possibilities. This section presents a plan-based
approach to finding members of V Hg through search. This
framework makes two improvements over existing plan-based
experience managers that allow it to ensure V Hg 6= ∅ in more
gameplay situations than previous approaches by searching
through alternate possible world histories and mechanics that
are consistent with player knowledge.

Previous plan-based interactive narrative systems do not
utilize a model of player knowledge when building branching
story data structures. This artificially restricts Hg to have a
single trajectory, which is the exact series of events that have
played out in the story world. This restriction holds if the
player has full knowledge of story events. However, when
the player has incomplete knowledge of the story world, this
model limits V Hg to trajectories that begin with a single
member of Hg . So widening Hg by considering all consistent
trajectories according to a model of player knowledge strictly
increases the trajectories in V Hg and ensures that V Hg 6= ∅ in
more situations. Section IV-B presents a plan-based algorithm
called event revision to search all possible trajectories in V Hg ,
given a microtheory, player character, and a world history.

Previous plan-based systems also do not utilize a model
of player knowledge when executing interventions. One type
of intervention is a shift between two alternate models of
world mechanics to prevent an unwanted outcome of a player’s
action. Interventions in plan-based systems can be represented
as shifts between alternate sets of operators that represent
similar actions but have different sets of preconditions or
effects. If the experience manager is allowed to jump back
and forth between operators at will, it is commonly thought
that the player will notice inconsistencies in the way the
world operates. Due to this, systems like ASD [21] remove
interventions entirely. However, if the experience manager
only shifts between operator libraries when both are consistent
with what the player has experienced, then the player should
not notice an inconsistency. Intervening to cancel out effects of
player actions that contradict author goals is a second way to
ensure that V Hg 6= ∅ in more situations. Section IV-C presents
a plan-based algorithm called domain revision that identifies
and restricts interventions inconsistent with player knowledge.

A. Mediation

Our interactive narrative system is a plan-based mediator.
Mediators are strong-story [1] interactive narrative agents
that build branching story structures by generating a linear
narrative and then creating contingencies for each way a
player-controlled character could disrupt the planned story.
The input to mediation is a narrative planning problem created

by an author. Given a planning problem and a planner, our
mediator generates a mediation game tree, a world tree where
there is exactly one player-controlled character, each character
is given a sequential turn order for taking action, and a plan is
associated with every vertex. The root of the tree is the initial
state. The outgoing edges of any vertex is the set of actions
enabled in the vertex’s state performed by the character with
the current turn. Actions that non-player characters take are
dictated by the plan associated with the outgoing vertex. The
plan associated with the root node is the original solution to
the input planning problem given by the planner.

As new levels of the mediation game tree are expanded,
the original plan is updated at each new node. Instead of
generating a new plan at every expanded vertex, our mediator
utilizes a plan management strategy. To manage plans, the
system first draws dependencies between actions in the current
plan. A dependency is an interval in a trajectory t that begins at
a state s, ends at an action aj , and is associated with an atomic
formula p where p is a precondition of ai and s is the successor
of the last action ai that is ordered before aj in t and has p as
an effect. If no such action exists, s becomes the initial state
s0. For every precondition of every action in the current plan,
the system draws a corresponding dependency. From the plan
and set of dependencies, the system can classify the vertex’s
outgoing actions as constituent, consistent, or exceptional.

A constituent action is one that is prescribed by the current
plan. To update the plan after a constituent action, the system
removes the taken action from the trajectory and updates the
dependencies. A consistent action is one whose effects do
not reverse any atomic formula attached to a dependency in
the initial state. When a consistent action is performed, the
plan does not change. An exceptional action is one with at
least one effect that reverses an atomic formula attached to a
dependency in the initial state. When an exceptional action is
taken, the current plan must be revised by the planner. If the
planner does not return a solution, the game tree has entered
the set of non-valid trajectories from which there is no return.

As described, mediation is over-constrained to consider only
plans that match the actual path through the mediation game
tree, when the player may exist in a superposition of possible
consistent trajectories given their partial knowledge of the
game world. Two methods allow the system to transition the
player between all trajectories in the player’s set of possible
world histories Hg: event revision and domain revision. The
first method, event revision, searches through alternate world
histories compatible with what the player has observed.

B. Event Revision

Event revision [32] finds trajectories with alternate histories
in Hg instead focusing on a single default path. Event revision
is most useful when many characters have the opportunity to
take meaningful actions while the player is not observing. This
event revision process is planner independent. It is presented
modularly and can be integrated into a planner’s action selec-
tion process. There are two phases of event revision: removal,
where a subjective history is created by removing actions and
state formulae unobserved by the player, and planning, where

IEEE TRANSACTIONS ON GAMES 6

the system searches for a new plan that is compatible with the
remaining player observations.

Algorithm 1 Unobserved Element Removal
REMOVE (World History Trajectory h,

Knowledge Microtheory Mt,
Story Agent g)

trajectory t← h
for each action a ∈ αt

if g does not observe a according to Mt
a← ∅

for each state s ∈ σt
for each atomic formula f ∈ s

if g does not observe f according to Mt
s← s− f

return t

The removal phase takes place before the system searches
for a plan. An agent knowledge trajectory, kg , is created where
all unobserved actions and atomic state formulae in the world
history are removed. Pseudocode for the action removal phase
is given in Algorithm 1. The trajectory returned by Algorithm
1 is the player g’s knowledge of world history events, kg .

Algorithm 2 Enabled Action Constraint
CONSTRAIN (Current Trajectory t,

Agent Knowledge kg ,
Knowledge Microtheory Mt,
Story Agent g,
Current Actor According to Turn Ordering ca)

s← state reached by t
α← set of actions enabled in s
if |αt| > |αkg

| return α

for each action a ∈ α
sa ← successor state created by applying a to s
ta ← trajectory created by appending (a, sa) to t
if Consistent(Remove(t,Mt, g), kg) is false
or a’s actor is not ca
α← α− a

return α

The second phase uses a modified planning algorithm to
search for a solution plan from the initial state of the problem
at the root of the tree. The planning algorithm is modified to
constrain enabled actions prior to the current state of gameplay
to those that are consistent with the player’s observations
and the tree’s ordering. Pseudocode for constraining actions
is given in Algorithm 2 and a sub-process that determines
consistent trajectories is given in Algorithm 3.

These algorithms enable the system to explore all possible
world histories consistent with player observations. It can also
be used to move between trees in the problem’s world forest
to paths that start with alternate initial states. However, the
system is still over constrained since it can only use the
single domain model the framework begins with. The second
component, domain revision, transitions between different
domains consistent with player observations.

Algorithm 3 Perceptually Consistent Trajectory Check
CONSISTENT (Current Trajectory t, Agent Knowledge kg)

for each action at ∈ αt at position i
if action akg

∈ αkg
at position i is not ∅

and not equal to at return false
for each state st ∈ σt at position i

if st is not equal to state skg ∈ σkg

at position i return false
return true

C. Domain Revision

Domain revision transitions between alternate trees in the
world forest W that correspond to world histories with alter-
nate, compatible operators given in O. Two sets of operators
are compatible, given player observations, if both support the
same series of observed actions and precondition-effect pairs
of observed actions. Domain revision is most useful when the
player is learning how the game world works and there are
many possible world models the system can choose between.
If a player is replaying a game for the second time, domain
revision should retain its model of what game mechanics the
player has observed if it wants to maintain the illusion of a
fixed story world. When combined with event revision, domain
revision allows the full space of V Hg to be searched.

Domain revision is performed with the same three compo-
nents that enable event revision. Additional trees are explored
by moving to other domains in O if the current one fails.
When a domain is selected, planning fails if the domain is in-
compatible with player observations. The process exhaustively
searches domains in O until a plan is found or O is exhausted.
A problem with this approach is it doesn’t reason about what
domains should be considered which may make online domain
revision impractical. A solution is to constrain the search to
domains most likely to mediate the exceptional action.

One way to constrain the space is to only alternate do-
mains that change the behavior of the exceptional action
template [33]. A single operator template should have multiple
alternate sets of preconditions and effects for different domains
in O. The system can perform domain revision using operator
libraries that differ in their definition of the exceptional ac-
tion’s operator template. This method corresponds to a class
of interventions where the outcome of an action is changed to
prevent it from being exceptional.

V. THE GENERAL MEDIATION ENGINE

This section presents details of a plan-based architecture for
interactive narrative generation called the General Mediation
Engine (GME) that implements the mediation components
detailed in Section IV. GME creates gameplay by maintaining
data structures that correspond to sets outlined in Section III,
providing a user interface to the data structures through
procedural content generation, and utilizing planning to search
for trajectories in the user’s V H set. Narrative can be viewed
as consisting of story and discourse [34]. Similarly, GME
can be viewed as having a story generator, which produces
interactive narrative data structures, and a discourse generator,

IEEE TRANSACTIONS ON GAMES 7

which generates a representation of the story world. GME
is implemented in C# [35], [36]. Its story generator takes as
input an interactive narrative problem and builds a mediation
game tree. It maintains a world state and a plan and updates
its data structures according to actions taken by the player
and NPCs. The story generator exposes information to the
discourse generator which conveys information to the player.

GME assembles interfaces with a procedural content gen-
eration (PCG) pipeline to display interactive narratives to
players. GME has three text interfaces: a local and web-
based console application and a hyptertext Choose Your Own
Adventure. It also has a 2D interface built with the Unity game
engine. Each of these uses a library of assets to dynamically
configure an interface based on GME’s current state. These
configurations are done automatically given a PDDL domain
and problem file so a new gameplay experience can be
generated from each new PDDL input.

Fig. 1. GME’s online console interface.

GME’s first interface is a windows console application [37].
The interface uses simple text templates to convey world states
and character actions from the GME back end to the player.
The player advances gameplay by typing actions into the text
input. When the player types in an enabled action, the interface
informs GME, which transitions down the action’s edge in
its tree. GME then takes action for its system-controlled
characters according to the current plan. Once finished, the
interface displays observed system actions along with the new
world state to the player. GME also has two online versions
of this interface: one shown in Figure 1 and a Choose Your
Own Adventure (CYOA) web page interface.

The final interface is a visual 2D system implemented in
the Unity game engine [38], called UGME. Figure 2 pictures
a demo sneaking game implemented in UGME called Base
Case [39]. Instead of conveying world states and character
actions with text templates, UGME constructs and controls
a 2D environment from a GME DLL using the Unity game
engine. Before execution, collections of assets including art,
animations, sound, and code, called prefabs can be compiled
in Unity by an author. UGME instantiates prefabs from its
resource library to represent story objects in GME’s story
world. The entire Base Case game world is created with
prefabs instantiated from this resource library.

VI. EVALUATION

This section presents an evaluation of event revision and
domain revision as implemented in GME by comparing met-

Fig. 2. UGME gameplay.

rics recorded from expansions of interactive narrative trees.
The first tree in each test is generated with GME’s base-
line mediation method. The baseline tree’s metrics are then
compared against a second tree that is generated with either
event revision, domain revision, or both working together.
Event and domain revision monotonically add nodes to the
mediation game tree per level, so we can expect the number of
nodes these trees to always be equal or more than the number
of nodes per level in the baseline. Sections VI-A, VI-B,
and VI-C all provide evidence that supports this hypothesis
by examining trees built from three different PDDL inputs.

A. Batman Domain

The first test domain is a situation set in a Batman universe.
The problem first appeared as an example for event revision
in the context of POCL mediation [40], [32]. The Batman
domain models a situation in the film The Dark Knight. The
problem is set in Gotham City. The Joker is being held at the
Gotham Police Department. The player is Batman and is about
to confront the Joker. The Joker’s henchmen have kidnapped
two important characters, Rachel Dawes and Harvey Dent,
and are transporting them to hostage locations. The Joker tells
Batman about his hostages. The Joker says the hostages will
be killed and Batman has time to only save one. In order to
set up the final act where Harvey Dent is turned into Two
Face, the system has the goal of Batman saving Harvey at
the expense of Rachel. For this to happen, the system has
the henchmen deliver Rachel to 52nd Street and Harvey to
Avenue X. The Joker tells Batman where the characters are
and Batman decides who to save. In the film, Batman travels
to Avenue X where he saves Harvey.

However, these world mechanics allow Batman to travel to
52nd Street and save Rachel, which would kill Harvey and end
the possibility of a final act with Two Face. If event revision
is used, the past events of the henchmen transporting Rachel
and Harvey to their destinations are identified as outside the
players knowledge of the world history. Once these events are
identified they can be removed and replaced with the alternate

IEEE TRANSACTIONS ON GAMES 8

(a) Baseline Tree (b) Event Revision Tree

Fig. 3. Graph of possible player actions in a baseline and event revision
tree created by GME from the Batman domain. The trees show only player
actions, not NPC behaviors. States are nodes. Possible player actions are
directed edges. A dead end is indicated with an outlined, red circle.

event sequence of the henchmen delivering Rachel to Avenue
X and Harvey to 52nd Street. In this history, Joker lies about
hostage locations in order to reverse Batman’s decision.

We used GME to generate a baseline and an event revision
tree for the Batman Domain. Our hypothesis is that GME will
generate equal or more nodes per level in its event revision
tree when compared to the baseline. The first 18 levels of
each tree were generated, the point where a goal node is first
encountered. As expected, event revision produces 23 valid
nodes as opposed to the baseline method’s 17 nodes. Level
12 is where the player decides whether to move to Avenue X
or 52nd Street. From here until the story ends at Level 18 the
event revision tree has 100% more branches (2 to 1) than the
baseline. Figure 3 shows the two trees. A single dead end is
reached in the baseline, where Rachel is saved, but no dead
ends are reached in the event revision tree.

B. Wild West Domain

The second domain is set in a generic Wild West world.
The player is a gun for hire who has been captured by a band
of thieves. The thieves are holding the player prisoner in a
small house outside the gang’s main compound. The player’s
hands are tied by rope and a single bandit stands guard outside
the house by a bonfire. Both the player and the guard have a
concealed knife. The system’s goal is to solidify trust between
the player and a potential love interest who works with the
thieves. The player met the love interest earlier in the game
and was surprised to find the love interest at the camp before
the player was captured. To solidify this trust, the system plans
for the love interest to apprehend the guard, tie the guard’s
hands with rope, and release the player. The system’s goal is
for the player and love interest to escape together and return to
the nearest town. To force this situation, the guard will cut his
bonds, return to the compound, and warn his fellow bandits.

However, these world mechanics allow the player to cut
their own bonds and escape without the love interest. Using
intervention, the system could prevent the player from cutting
through the rope by replacing the original effect with one that
does not update the world state. It’s not unreasonable to show
the player being unable to reach the concealed knife or cut
the rope. But if the player emerges from the house with their

love interest to find ropes cut by the guard in order to escape,
they might realize the system has created a double standard in
which ropes can be cut by bound persons, but only when the
system allows it. If domain revision is used, the rule - bound
persons with a concealed knife can cut through their bonds - is
erased from the domain when the intervention is used against
the player. From that point on, no character would be able to
free themselves with a concealed knife when bound with rope.
Instead, the guard might burn his bonds using the bonfire and
leave behind charred rope for the player to find.

We used GME to generate a baseline and a domain revision
tree for the Wild West Domain. Our hypothesis is that GME
will generate equal or more nodes per level in its domain
revision tree when compared to the baseline. The first 11 levels
of each tree were generated, the point where a goal node is first
encountered. As expected, domain revision produces 36 valid
nodes as opposed to the baseline method’s 10 nodes. Levels 3,
6, and 9 are where the player makes a decision whether to sit
still or make an escape. After Level 3 the domain revision tree
has 100% more branches (2 to 1), after Level 6 the domain
revision tree has 400% more branches (4 to 1), and after Level
9 the domain revision tree has 800% more branches (8 to 1)
when compared to the baseline tree. Figure 4 shows a single
dead end is reached in the accommodation tree at Level 3, 6,
and 9, where the player has an opportunity to escape, but no
dead ends are reached in the domain revision tree.

C. Spy Domain

The final domain is set in a Spy world loosely based on the
Metal Gear game series. The player, a spy named Snake, must
foil the final attempt of the antagonist, the Boss, to bring a
weaponized satellite online. The confrontation takes place on a
satellite dish antenna cradle with five discrete locations where
the Snake and Boss interact: the Elevator Room, Gear Room,
Left and Right Walkways, and the Platform. The locations
are connected by doors that can only be traversed in one
direction. The Elevator Room leads to the the Gear Room, the
Gear Room leads to the Left and Right Walkway, and each
Walkway leads to the Platform. Snake begins the game in the
Elevator Room. Her job is to disable the antenna’s alignment
mechanism in the Gear Room and eliminate the Boss. The
Boss plans to send instructions to the satellite by linking his
phone to one of four computer terminals on the cradle. The
author’s goal is for the Boss to set a trap to be disabled by
the player before a final confrontation on the Platform.

TABLE I
SPY DOMAIN PERCENTAGE INCREASE IN BRANCHES OVER BASELINE

Depth Domain Event Domain + Event

4 5 5 10
5 10 12 22
6 16 23 39
7 22 27 48
8 28 29 57

We used GME to generate a baseline, event revision, domain
revision, and combined event and domain revision interactive
narrative tree for the Spy Domain. Our hypothesis is that GME

IEEE TRANSACTIONS ON GAMES 9

(a) Baseline Tree (b) Domain Revision Tree

Fig. 4. Graph of player choices in a baseline and a domain revision tree automatically created by GME from the Wild West domain.

will generate equal or more nodes per level in its event and
domain revision trees when compared to the baseline. The
first 8 choice levels were generated, past the point where a
goal node is first encountered. As expected, domain revision
produces 5290 valid nodes, event revision produces 5415 valid
nodes, and both produce 6431 valid nodes as opposed to the
baseline method’s 4276 nodes. Table I shows the percentage
increase in valid branches from choice levels 4 to 8 in the
domain, event, and combined trees when compared to the
baseline. The increase in branches grows over time in each
tree and reaches over 50% in the combined tree at Level 8.

TABLE II
SPY DOMAIN AVERAGE TIME IN SECONDS PER NODE EXPANDED

Baseline Domain Event Domain + Event

0.75 1.23 1.42 1.90

Table II shows the average time in seconds it takes GME to
generate a node in each tree. In all cases the time is below 2
seconds per node, which can be lessened further by caching.
This is fast enough to generate and cache single successor
nodes online as the player interacts with GME.

TABLE III
SPY DOMAIN AVERAGE SUCCESSFUL CHOICE OPTIONS PER CHOICE

Baseline Domain Event Domain + Event

3.05 3.17 3.17 3.27

Table III shows the average number of choice options per
player choice that match author goals in each of the four
trees. The number, averaged over thousands of possible choice
points, grows with each perceptual experience management
method used. Similarly, Table IV shows the average number of
choice options per player choice that lead to dead ends in each
of the four trees. The number declines with each perceptual
experience management method used.

VII. FUTURE WORK

This section explores three areas of work to be expanded
on: a human subjects study, the model of player knowledge,

TABLE IV
SPY DOMAIN AVERAGE UNSUCCESSFUL CHOICE OPTIONS PER CHOICE

Baseline Domain Event Domain + Event

1.39 1.29 1.17 1.10

and GME’s PCG pipeline. First, we can test whether human
participants notice manipulations perceptual experience man-
agement performs with event and domain revision. We plan
a human subjects study where participants play GME games
to determine whether they notice manipulations. A control
game can make modifications that contradict the model of
player knowledge. We predict players will notice control game
manipulations but not in the regular GME games.

Next, the model of user knowledge can be expanded. Our
microtheory predicts users perfectly observe everything they
are co-located with. However, players may not see or remem-
ber everything that is presented on screen. Refinement of the
model may expand the number of manipulations perceptual
experience management can perform. Finally, GME could
use a general visual pipeline for translating PDDL states
and mechanics into a playable interface. The current system
uses prefabs, a predefined generator, and action interfaces that
convey player actions to GME. A full PCG pipeline would
automatically determine these components by generating art
assets that represent PDDL and assemble a game world and
mechanics from the declarative input.

VIII. CONCLUSION

This document presents perceptual experience management,
a framework for widening the branching factor of interactive
narrative trees produced by automated, strong story experience
management systems. This is achieved by tracking player
observations during gameplay and dynamically revising past
story events and world mechanics to allow player actions while
maintaining author control and maintaining the illusion of
consistency from the player’s perspective. We show perceptual
experience management generates interactive narrative trees
with more branches that allow player choices and maintain
author constraints when compared to a baseline.

IEEE TRANSACTIONS ON GAMES 10

REFERENCES

[1] M. Riedl and V. Bulitko, “Interactive Narrative: An Intelligent Systems
Approach,” AI Magazine, vol. 34, no. 1, pp. 67–77, 2013.

[2] B. Magerko, “Evaluating Preemptive Story Direction in the Interactive
Drama Architecture,” Journal of Game Development, vol. 2, no. 3, pp.
25–52, 2007.

[3] M. O. Riedl and R. M. Young, “From Linear Story Generation to
Branching Story Graphs,” Computer Graphics and Applications, vol. 26,
no. 3, pp. 23–31, 2006.

[4] ——, “Narrative Planning: Balancing Plot and Character,” Journal of
Artificial Intelligence Research, vol. 39, no. 1, pp. 217–268, 2010.

[5] S. G. Ware and R. M. Young, “Glaive: A State-Space Narrative Planner
Supporting Intentionality and Conflict,” in AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, 2014, pp. 80–86.

[6] M. Riedl, C. J. Saretto, and R. M. Young, “Managing Interaction
Between Users and Agents in a Multi-Agent Storytelling Environment,”
in International Conference on Autonomous Agents and Multiagent
Systems, 2003, pp. 741–748.

[7] M. Bal, Narratology: Introduction to the Theory of Narrative. Univer-
sity of Toronto Press, 2009.

[8] R. M. Young, S. G. Ware, B. Cassell, and J. Robertson, “Plans and
Planning in Narrative Generation: A Review of Plan-Based Approaches
to the Generation of Story, Discourse and Interactivity in Narratives,”
Sprache und Datenverarbeitung, vol. 37, no. 1-2, pp. 41–64, 2013.

[9] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso,
D. Weld, and D. Wilkins, PDDL - The Planning Domain Definition
Language, 1998.

[10] P. Haslum, “Narrative Planning: Compilations to Classical Planning,”
Journal of Artificial Intelligence Research, vol. 44, pp. 383–395, 2012.

[11] J. Teutenberg and J. Porteous, “Efficient Intent-Based Narrative Gener-
ation Using Multiple Planning Agents,” in International Conference on
Autonomous Agents and Multi-Agent Systems, 2013, pp. 603–610.

[12] S. G. Ware and R. M. Young, “CPOCL: A Narrative Planner Supporting
Conflict,” in AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, 2011, pp. 97–102.

[13] J. Hoffmann, “FF: The Fast-Forward Planning System,” AI Magazine,
vol. 22, no. 3, p. 57, 2001.

[14] M. Helmert, “The Fast Downward Planning System,” Journal of Artifi-
cial Intelligence Research, vol. 26, pp. 191–246, 2006.

[15] E. Packard, The Cave of Time, ser. Choose Your Own Adventure.
Bantam Books, 1979.

[16] R. Aylett, “Narrative in Virtual Environments - Towards Emergent
Narrative,” in AAAI Fall Symposium: Narrative Intelligence, 1999, pp.
83–86.

[17] R. S. Aylett, S. Louchart, J. Dias, A. Paiva, and M. Vala, “FearNot! –
an Experiment in Emergent Narrative,” in International Workshop on
Intelligent Virtual Agents, 2005, pp. 305–316.

[18] M. Mateas and A. Stern, “Façade: An Experiment in Building a Fully-
Realized Interactive Drama,” in Game Developer’s Conference, vol. 2,
2003.

[19] J. Bates, “The Nature of Characters in Interactive Worlds and the
Oz Project,” Carnegie Mellon University, Tech. Rep. CMU-CS-92-200,
1992.

[20] R. M. Young, M. O. Riedl, M. Branly, A. Jhala, R. J. Martin, and
C. J. Saretto, “An Architecture for Integrating Plan-Based Behavior
Generation with Interactive Game Environments,” Journal of Game
Development, vol. 1, no. 1, pp. 51–70, 2004.

[21] M. O. Riedl, A. Stern, D. M. Dini, and J. M. Alderman, “Dynamic
Experience Management in Virtual Worlds for Entertainment, Educa-
tion, and Training,” International Transactions on Systems Science and
Applications, vol. 4, no. 2, pp. 23–42, 2008.

[22] M. O. Riedl, “Towards Integrating AI Story Controllers and Game
Engines: Reconciling World State Representations,” in IJCAI Workshop
on Reasoning, Representation and Learning in Computer Games, 2005.

[23] J. Porteous, M. Cavazza, and F. Charles, “Applying Planning to Interac-
tive Storytelling: Narrative Control Using State Constraints,” Transac-
tions on Intelligent Systems and Technology, vol. 1, no. 2, p. 10, 2010.

[24] A. Ramirez and V. Bulitko, “Automated Planning and Player Modeling
for Interactive Storytelling,” Transactions on Computational Intelligence
and AI in Games, vol. 7, pp. 375–386, 2015.

[25] B. Sunshine-Hill and N. I. Badler, “Perceptually Realistic Behavior
through Alibi Generation,” in AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, 2010, pp. 83–88.

[26] M. O. Riedl and R. M. Young, “Open-World Planning for Story
Generation,” in International Joint Conference on Artificial Intelligence,
2005, pp. 1719–1720.

[27] I. Swartjes, E. Kruizinga, and M. Theune, “Lets Pretend I Had a Sword,”
pp. 264–267, 2008.

[28] R. Guha and J. McCarthy, “Varieties of Contexts,” in International and
Interdisciplinary Conference on Modeling and Using Context, 2003, pp.
164–177.

[29] K. Hartsook, A. Zook, S. Das, and M. O. Riedl, “Toward Supporting
Stories with Procedurally Generated Game Worlds,” in Conference on
Computational Intelligence and Games. IEEE, 2011, pp. 297–304.

[30] A. Zook and M. O. Riedl, “Automatic Game Design via Mechanic
Generation,” in AAAI Conference on Artificial Intelligence, 2014, pp.
530–537.

[31] S. G. Ware and R. M. Young, “Rethinking Traditional Planning As-
sumptions to Facilitate Narrative Generation,” in AAAI Fall Symposium:
Computational Models of Narrative, 2010, pp. 71–72.

[32] J. Robertson and R. M. Young, “Finding Schrödinger’s Gun,” in Artificial
Intelligence and Interactive Digital Entertainment, 2014, pp. 153–159.

[33] ——, “Interactive Narrative Intervention Alibis through Domain Re-
vision,” in Workshop on Intelligent Narrative Technologies, 2015, pp.
49–52.

[34] S. B. Chatman, Story and Discourse: Narrative Structure in Fiction and
Film. Cornell University Press, 1980.

[35] J. Robertson and R. M. Young, “Gameplay as On-Line Mediation
Search,” in Experimental AI in Games Workshop, 2014, pp. 42–48.

[36] “The General Mediation Engine,” https://github.com/justusrobertson/GME,
accessed: 2017-08-21.

[37] J. Robertson and R. M. Young, “The General Mediation Engine,” in
Experimental AI in Games Workshop, 2014, pp. 65–66.

[38] ——, “Automated Gameplay Generation from Declarative World Repre-
sentations,” in AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, 2015, pp. 72–78.

[39] M. Cook, S. Eiserloh, J. Robertson, R. M. Young, T. Thompson,
D. Churchill, M. Cerny, S. P. Hernandez, and V. Bulitko, “Playable Ex-
periences at AIIDE 2015,” in AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, 2015, pp. 227–231.

[40] J. Robertson and R. M. Young, “Modeling Character Knowledge in
Plan-Based Interactive Narrative to Extend Accomodative Mediation,”
in Workshop on Intelligent Narrative Technologies, 2013, pp. 93–96.

Justus Robertson holds a B.S. in Computer Science
(2010) and English (2010), an M.S. in Computer
Science (2014), and a Ph.D. in Computer Sci-
ence (2017) from North Carolina State University,
Raleigh, NC. He is currently a Postdoctoral Research
Scholar in the Department of Computer Science
at NCSU. His work is at the intersection of arti-
ficial intelligence, interactive narrative generation,
procedural content generation, and automated game
design, grounded in models of human cognition.

R. Michael Young (M ‘98; SM ‘07) received the
B.S. degree in computer science from the Califor-
nia State University at Sacramento, Sacramento, in
1984, the M.S. degree in computer science with a
concentration in symbolic systems from Stanford
University, Stanford, CA, in 1988, and the Ph.D.
degree in intelligent systems from the University
of Pittsburgh, Pittsburgh, PA, in 1998. He worked
as a Postdoctoral Fellow at the Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, and as
a Professor of Computer Science and Co-Director of

the Digital Games Research Center, North Carolina State University, Raleigh,
NC. He is currently a Professor in the School of Computing and the Deputy
Director of the Entertainment Arts and Engineering Program, at the University
of Utah, Salt Lake City, UT.

