Case Study Amp2: Wideband Amplifier Design

Design of an 8–12 GHz hJFET Amplifier with 14 dB gain

Slides copyright 2013 M. Steer.
Starting Point

Specifications

- 8–12 GHz
- 14 ± 1 dB gain. This is transducer gain: $G_T = \frac{P_L}{P_{Ai}}$
- Maximum noise figure of 1 dB
- Topology
```plaintext
! FILENAME: N32400A.2P VERSION: 5.0.
! NEC PART NUMBERS: NE32400 DATE:06/91
! BIAS CONDITIONS: VDS=2V, IDS=10mA
! NOTE: S-PARAMETERS INCLUDES BOND WIRES.
! GATE: TOTAL 2 WIRES, 1 PER BOND PAD, EACH WIRE 0.0132"(335um) LONG.
! DRAIN: TOTAL 2 WIRES, 1 PER BOND PAD, EACH WIRE 0.0094"(240um) LONG.
! SOURCE: TOTAL 4 WIRES, 2 PER SIDE, EACH WIRE 0.0070"(178um) LONG.
! WIRE: 0.0007"(17.8um) DIAMETER, GOLD

# GHZ S MA R 50

<table>
<thead>
<tr>
<th>GHZ</th>
<th>S11</th>
<th>S12</th>
<th>S21</th>
<th>S22</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.999</td>
<td>-1</td>
<td>5.04</td>
<td>179</td>
</tr>
<tr>
<td>0.2</td>
<td>0.999</td>
<td>-3</td>
<td>5.02</td>
<td>178</td>
</tr>
<tr>
<td>0.5</td>
<td>0.999</td>
<td>-6</td>
<td>4.97</td>
<td>175</td>
</tr>
<tr>
<td>1.0</td>
<td>0.997</td>
<td>-12</td>
<td>4.88</td>
<td>170</td>
</tr>
<tr>
<td>2.0</td>
<td>0.990</td>
<td>-23</td>
<td>4.70</td>
<td>161</td>
</tr>
<tr>
<td>3.0</td>
<td>0.980</td>
<td>-34</td>
<td>4.54</td>
<td>152</td>
</tr>
<tr>
<td>4.0</td>
<td>0.970</td>
<td>-44</td>
<td>4.38</td>
<td>144</td>
</tr>
<tr>
<td>5.0</td>
<td>0.950</td>
<td>-53</td>
<td>4.22</td>
<td>136</td>
</tr>
<tr>
<td>6.0</td>
<td>0.930</td>
<td>-62</td>
<td>4.08</td>
<td>128</td>
</tr>
<tr>
<td>7.0</td>
<td>0.910</td>
<td>-71</td>
<td>3.93</td>
<td>120</td>
</tr>
<tr>
<td>8.0</td>
<td>0.890</td>
<td>-79</td>
<td>3.80</td>
<td>113</td>
</tr>
<tr>
<td>9.0</td>
<td>0.870</td>
<td>-87</td>
<td>3.67</td>
<td>106</td>
</tr>
<tr>
<td>10.0</td>
<td>0.860</td>
<td>-94</td>
<td>3.54</td>
<td>99</td>
</tr>
<tr>
<td>11.0</td>
<td>0.840</td>
<td>-102</td>
<td>3.42</td>
<td>92</td>
</tr>
<tr>
<td>12.0</td>
<td>0.820</td>
<td>-108</td>
<td>3.30</td>
<td>86</td>
</tr>
<tr>
<td>13.0</td>
<td>0.800</td>
<td>-115</td>
<td>3.19</td>
<td>80</td>
</tr>
<tr>
<td>14.0</td>
<td>0.790</td>
<td>-121</td>
<td>3.08</td>
<td>74</td>
</tr>
<tr>
<td>15.0</td>
<td>0.770</td>
<td>-128</td>
<td>2.97</td>
<td>68</td>
</tr>
<tr>
<td>16.0</td>
<td>0.750</td>
<td>-134</td>
<td>2.87</td>
<td>63</td>
</tr>
<tr>
<td>17.0</td>
<td>0.740</td>
<td>-139</td>
<td>2.77</td>
<td>57</td>
</tr>
<tr>
<td>18.0</td>
<td>0.720</td>
<td>-145</td>
<td>2.68</td>
<td>52</td>
</tr>
<tr>
<td>19.0</td>
<td>0.710</td>
<td>-150</td>
<td>2.59</td>
<td>47</td>
</tr>
<tr>
<td>20.0</td>
<td>0.690</td>
<td>-155</td>
<td>2.50</td>
<td>42</td>
</tr>
<tr>
<td>22.0</td>
<td>0.660</td>
<td>-165</td>
<td>2.32</td>
<td>32</td>
</tr>
<tr>
<td>24.0</td>
<td>0.640</td>
<td>-175</td>
<td>2.16</td>
<td>23</td>
</tr>
<tr>
<td>26.0</td>
<td>0.610</td>
<td>177</td>
<td>2.01</td>
<td>15</td>
</tr>
<tr>
<td>28.0</td>
<td>0.590</td>
<td>168</td>
<td>1.87</td>
<td>7</td>
</tr>
<tr>
<td>30.0</td>
<td>0.570</td>
<td>160</td>
<td>1.73</td>
<td>-1</td>
</tr>
</tbody>
</table>
```
S_{11}, S_{12}, S_{22}
$S_{11}, S_{12}, S_{22}, S_{21}$
Input matching network

$$\Gamma_{in} = S_{11} + \frac{S_{21}S_{12}\Gamma_L}{1 - S_{22}\Gamma_L}$$

S_{12} is small so Γ_{in} is close to S_{11}.

We want small so $\Gamma_S = \Gamma_{in}^*$ for maximum power transfer (optimum M1).
Approximate Input Matching Network

\[\Gamma_S = \Gamma_{in}^* \] for optimum M1.

Curve B is approximate optimum \(\Gamma_S \).
Case Study: Wideband Amplifier Design Using the Negative Image Model. Part B, Image Model
Design approach preview

\(\Gamma_S \) for optimum M1.

What does this look like?

A resistor and negative capacitor in series.
Looking ahead: amplifier design using a negative image model

$$R \vartriangle (-C)$$
Looking ahead: amplifier design using a negative image model
Case Study: Wideband Amplifier Design Using the Negative Image Model. Part C, Gain
Gains

Maximum Available Power Gain

\[
G_{MA} = \left| \frac{S_{21}}{S_{12}} \right| \left(k - \sqrt{k^2 - 1} \right)
\]

\[
k = \left(\frac{1 - |S_{11}|^2 - |S_{22}|^2 + \Delta}{2|S_{12}| |S_{21}|} \right)
\]

Transducer Gain

\[
G_T = \frac{P_L}{P_{Ai}}
\]

Maximum Stable Gain

\[
G_{MS} = \left| \frac{S_{21}}{S_{12}} \right|
\]

Like \(G_{MA}\) at edge of stability \(k = 1\).
Transistor properties

- G_{MA} is undefined from 8 to 12 GHz
 - The amplifier is not unconditionally stable

- G_{MS}
 - @8GHz: 16.4 dB
 - @10GHz: 15.8 dB
 - @12GHz: 14.8 dB

- Target transducer gain is 14 dB
 - Achieved by detuning the matching networks

Maximum Stable Gain

$$G_{MS} = \left| \frac{S_{21}}{S_{12}} \right|$$

Like G_{MA} at edge of stability $k = 1$.
Case Study: Wideband Amplifier Design Using the Negative Image Model. Part D, Noise
Noise

Noisy amplifier model with noisy active device.

Noisy amplifier model with noise-free active device.

- e_n and i_n are partially correlated for a transistor.
- The source admittance determines how they combine.
 - Noise could be minimized with right Y_S.
Noise performance of a two port is described by noise factor F (Noise figure, $NF = 10 \log F$).

$$F = F_{\text{min}} + \frac{r_n}{g_s} \left| y_s - y_{\text{opt}} \right|^2$$

r_n is the equivalent noise resistance

$y_s = Y_S / Y_0 \quad g_s = \Re\{y_s\}$

y_{opt} is the optimum value of y_s

F_{min} is F when $y_s = y_{\text{opt}}$
Noise

\[F = F_{\text{min}} + \frac{r_n}{g_s} \left| y_s - y_{\text{opt}} \right|^2 \]

\[F = F_{\text{min}} + \frac{4r_n \left| \Gamma_s - \Gamma_{\text{opt}} \right|^2}{\left(1 - \left| \Gamma_s \right|^2 \right) \left|1 + \Gamma_{\text{opt}} \right|^2} \]
Noise figure circles

\[F = F_{\text{min}} + \frac{4r_n |\Gamma_s - \Gamma_{\text{opt}}|^2}{\left(1 - |\Gamma_s|^2\right) \left|1 + \Gamma_{\text{opt}}\right|^2} \]

Circles have increasingly higher NF.
Noise file

! FILENAME: N32400A.S2P VERSION: 5.0.
! NEC PART NUMBERS: NE32400 DATE:06/91
! BIAS CONDITIONS: VDS=2V, IDS=10mA
! NOTE: S-PARAMETERS INCLUDES BOND WIRES.
! GATE: TOTAL 2 WIRES, 1 PER BOND PAD, EACH WIRE 0.0132"(335um) LONG.
! DRAIN: TOTAL 2 WIRES, 1 PER BOND PAD, EACH WIRE 0.0094"(240um) LONG.
! SOURCE: TOTAL 4 WIRES, 2 PER SIDE, EACH WIRE 0.0070"(178um) LONG.
! WIRE: 0.0007"(17.8um) DIAMETER, GOLD

0.1	.999	-1	5.04	179	.002	89	.62	-1
0.2	.999	-3	5.02	178	.004	89	.62	-1
0.5	.999	-6	4.97	175	.008	87	.62	-4
1.0	.997	-12	4.88	170	.016	84	.62	-8
2.0	.990	-23	4.70	161	.030	77	.61	-15
3.0	.980	-34	4.54	152	.042	71	.61	-22
4.0	.970	-44	4.38	144	.052	65	.61	-29
5.0	.950	-53	4.22	136	.062	59	.60	-36
6.0	.930	-62	4.08	128	.071	53	.59	-41
7.0	.910	-71	3.93	120	.079	48	.59	-46
8.0	.890	-79	3.80	113	.086	43	.58	-51
9.0	.870	-87	3.67	106	.092	38	.57	-56
10.0	.860	-94	3.54	99	.099	34	.56	-61
11.0	.840	-102	3.42	92	.104	30	.55	-65
12.0	.820	-108	3.30	86	.109	27	.54	-70
13.0	.800	-115	3.19	80	.114	24	.53	-74
14.0	.790	-121	3.08	74	.119	21	.51	-78
15.0	.770	-128	2.97	68	.123	18	.50	-83
16.0	.750	-134	2.87	63	.127	16	.49	-87
17.0	.740	-139	2.77	57	.131	14	.48	-91
18.0	.720	-145	2.68	52	.135	12	.47	-95
19.0	.710	-150	2.59	47	.138	10	.46	-99
20.0	.690	-155	2.50	42	.142	8	.45	-102
22.0	.660	-165	2.32	32	.148	6	.43	-109
24.0	.640	-175	2.16	23	.153	4	.42	-116
26.0	.610	-177	2.01	15	.159	3	.41	-122
28.0	.590	168	1.87	7	.163	1	.41	-128
30.0	.570	160	1.73	-1	.168	0	.41	-134

! NOISE PARAMETERS
! NOTE: NOISE PARAMETERS FOR 28 & 30 GHZ
! ARE EXTRAPOLATED, NOT MEASURED.

0.30	.31	10	.39
0.31	.79	17	.36
0.33	.75	31	.33
0.38	.72	45	.30
0.40	.70	59	.27
0.50	.68	77	.24
0.60	.64	92	.22
0.71	.64	108	.19
0.85	.62	126	.18
1.00	.58	140	.15
1.20	.55	153	.13
1.50	.52	164	.11
1.80	.49	175	.10
2.10	.48	-176	.08
2.40	.46	-168	.07
2.80	.46	-160	.05
Noise data

\[
F = F_{\text{min}} + \frac{4r_n |\Gamma_s - \Gamma_{\text{opt}}|^2}{(1 - |\Gamma_s|^2)(1 + \Gamma_{\text{opt}})^2}
\]

Table: Noise Parameters

<table>
<thead>
<tr>
<th>Frequency (ns)</th>
<th>NF_{\text{min}}</th>
<th>\Gamma_{\text{opt}}</th>
<th>r_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.30</td>
<td>0.81</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>0.31</td>
<td>0.79</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>0.33</td>
<td>0.75</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>0.38</td>
<td>0.72</td>
<td>45</td>
</tr>
<tr>
<td>8</td>
<td>0.43</td>
<td>0.70</td>
<td>59</td>
</tr>
<tr>
<td>10</td>
<td>0.50</td>
<td>0.68</td>
<td>77</td>
</tr>
<tr>
<td>12</td>
<td>0.60</td>
<td>0.66</td>
<td>92</td>
</tr>
<tr>
<td>14</td>
<td>0.71</td>
<td>0.64</td>
<td>108</td>
</tr>
<tr>
<td>16</td>
<td>0.85</td>
<td>0.62</td>
<td>126</td>
</tr>
<tr>
<td>18</td>
<td>1.00</td>
<td>0.58</td>
<td>140</td>
</tr>
<tr>
<td>20</td>
<td>1.20</td>
<td>0.55</td>
<td>153</td>
</tr>
<tr>
<td>22</td>
<td>1.50</td>
<td>0.52</td>
<td>164</td>
</tr>
<tr>
<td>24</td>
<td>1.80</td>
<td>0.49</td>
<td>175</td>
</tr>
<tr>
<td>26</td>
<td>2.10</td>
<td>0.48</td>
<td>-176</td>
</tr>
<tr>
<td>28</td>
<td>2.40</td>
<td>0.46</td>
<td>-168</td>
</tr>
<tr>
<td>30</td>
<td>2.80</td>
<td>0.46</td>
<td>-160</td>
</tr>
</tbody>
</table>

Frequency

18
Minimum noise figure

NF_{min} on the input (Γ_s) plane

Minimum noise figure, NF_{min}:

$\text{NF}_{\text{min}} = 0.38$ dB, 0.41 dB, 0.43 dB, 0.47 dB, 0.50 dB, 0.55 dB, 0.60 dB, 0.66 dB and 0.71 dB from 7 to 14 GHz in 1 GHz steps.
Noise figure circles

Noise figure circles at 10 GHz where $\text{NF}_{\text{min}} = 0.5 \text{ dB}$.

Circles have 0.1 dB steps so that the inner most circle indicates the values of Γ_S that achieves $\text{NF} = 0.6 \text{ dB}$.

NF_{MIN}
0.25 dB noise figure circles.

The noise figure on each circle is $\text{NF}_{\text{min}} + 0.25$ dB.

At 10 GHz circle is for $\text{NF} = 0.75$ dB

cf specification is for $\text{NF} \leq 1$ dB
Curve B is approximately the optimum Γ_S for maximum gain.

Points indicate optimum Γ_S for minimum noise figure.
Noise vs. Input match

Γ_S plane

S_{11}^*

NF_{min}

14 GHz

7 GHz
Summary, so far

- There is a reasonable trade-off between optimum input match and good noise performance.
- Still to consider:
 - Stability
 - Network topology that will lead to counterclockwise rotation on the Smith chart
Case Study: Wideband Amplifier Design Using the Negative Image Model. Part E, Stability

30 GHz

2 GHz

30 GHz

POTENTIALLY UNSTABLE

UNCONDITIONALLY STABLE

UNCONDITIONALLY STABLE
Input stability circles

2 GHz steps

Γ_S must be in stable region.
Output stability circles

2 GHz steps

Γ_L must be in the stable region.
Noise vs. input match vs. stability

Γ_S plane

S_{11}^*

14 GHz

7 GHz

2 GHz

30 GHz

NF_{min}
Maximum available gain

\[
G_{\text{MAX}} = \begin{cases}
G_{\text{MA}} = \left| \frac{S_{21}}{S_{12}} \right| (k - \sqrt{k^2 - 1}) & \text{if } k \geq 1 \\
G_{\text{MS}} = \left| \frac{S_{21}}{S_{12}} \right| & \text{if } k < 1
\end{cases}
\]

\[G_{\text{MAX}} = 17.0 \text{ dB}, 16.5 \text{ dB}, 16.0 \text{ dB}, 15.5 \text{ dB}, 15.2 \text{ dB}, 14.8 \text{ dB}, 14.5 \text{ dB}, 14.1 \text{ dB} \text{ at 7 to 14 GHz in 1 GHz steps.}\]
G_{MAX} circles at 10 GHz in 1 dB steps

The central circle has $G_{\text{MAX}} = 15.5$ dB

(Recall that the target gain is 14 dB)
Summary

- A tradeoff of stability, and noise and gain performance. Input matching network:

- Similar development for output matching network.
Network design using the negative image model

- Previously reached a tradeoff of stability, and noise and gain performance.

- Tradeoff of stability, noise, and gain performances
Case Study: Wideband Amplifier Design Using the Negative Image Model.
Part F, Image Model-Based Design
Amplifier design using a negative image model
Case Study: Wideband Amplifier Design Using the Negative Image Model. Part G, Completing the Design
Completing the amplifier design

- So far:
 - Designed the input/output matching network using input image model.
 - Design tuning of parameters.

- Final stage:
 - Design “real” input and output matching networks independently
 - Assemble entire amplifier
 - Optimize design
 - Use a few select parameters to optimize
Amplifier designed using the negative image model

PORT P=1
Z=22.9 Ohm
CAP ID=C1
C=-0.294 pF
IND ID=L1
L=-0.67 nH

SUBCKT ID=S2
NET="N32400a"

PORT P=2
Z=68 Ohm

Target:
14 dB gain
NF < 1 dB

Designed using tuning as there are only 5 parameters.

Computer optimization could have been used.
Design step

- Topology that produces counter-clockwise locus (with respect to frequency) on Smith chart.
- Well, perhaps just standstill.
“Real” input network design setup

Now design the “Input Network”
Design goal preview

\[\Gamma_S \]

8 GHz

12 GHz

\[Z_S = 22.9 \text{ Ohm} \]

\[C = -0.294 \text{ pF} \]

PORT P=1

CAP ID=C1

\[S_{21}, S_{12} \]
Simpler design problem.

Input image model

PORT
P=1
Z=50 Ohm

SUBCKT
ID=S1
NET="Input Network"

CAP
ID=C1
C=0.294 pF

RES
ID=R1
R=22.9 Ohm
Design approach preview
Realization of the Input network
Reflection coefficient looking into input matching network

Γ_{in}

Transistor

PORT
P=1
Z=50 Ohm

SUBCKT
ID=S1
NET="Input Network"

CAP
ID=C1
C

RES
ID=R1
R

Γ_{in}

12 GHz
8 GHz
Input network reflection coefficient from transistor
Input network reflection coefficient from transistor
Realization of the output network

Output image model:

Output network

Approximately $\lambda/4$ at 10 GHz.
Reflection coefficient looking into output matching network

PORT
P=1
Z=50 Ohm

SUBCKT
ID=S1
NET="Output Network"

CAP
ID=C1
C=0.346 pF

IND
ID=L1
L=0.67 nH

RES
ID=R1
R=68 Ohm

PORT
P=1
Z=50 Ohm

Output network.
Final stage of design

- So far:
 - Designed the input matching network using input image model. Used tuning of parameters.
 - Designed output matching network using input image model. Used tuning of parameters.

- Final stage:
 - Assemble entire amplifier
 - Optimize design
 - Use a few select parameters to optimize
Final amplifier

Specification:
8–12 GHz
14 dB gain
NF < 1 dB