Contents

Preface .. xvii
Acknowledgements xix

1 Fundamentals of Signal Transmission on Interconnects 1
 1.1 Interconnect as part of a packaging hierarchy 1
 1.2 The physical basis of interconnects 2
 1.2.1 What an interconnect is and how information is transmitted 3
 1.3 The physics, a guided wave 4
 1.3.1 Transmission of a pulse 4
 1.3.2 Transverse ElectroMagnetic lines (TEM-lines) 6
 1.3.3 Multimoding 8
 1.3.4 The effect of dielectric 8
 1.3.5 Frequency-dependent charge distribution 9
 1.3.6 Dispersion 11
 1.4 When an interconnect should be treated as a transmission line 12
 1.5 The concept of radio frequency transmission lines 14
 1.6 Primary transmission line constants 14
 1.7 Secondary constants for transmission lines 15
 1.8 Transmission line impedances 17
 1.9 Reflection .. 18
 1.9.1 Reflection and Voltage Standing-Wave Ratio (VSWR) 18
 1.9.2 Forward and backward travelling pulses 19
 1.9.3 Effect on signal integrity 19
 1.10 Multiple conductors 23
 1.11 Return currents 25
 1.11.1 Common impedance coupling 27
 1.12 Modelling of interconnects 28
 1.13 Summary .. 29

2 On-Chip Interconnects for Digital Systems 31
 2.1 Overview of on-chip interconnects 31
 2.1.1 Types of on-chip interconnects 32
 2.2 Experimental characterization of an on-chip interconnect 34
 2.3 RC Modelling on-chip interconnects 36
CONTENTS

- **2.3.1** Delay modelling .. 37
- **2.3.2** RC modelling ... 40
- **2.4** Modelling inductance 42
 - **2.4.1** When are inductance effects important? 43
 - **2.4.2** Inductance extraction 45
- **2.5** Design approaches to handling interconnect effects 46
 - **2.5.1** Performance-driven routing 46
 - **2.5.2** Transmission line return paths 46

3 **Interconnect Technologies** 49

- **3.1** Introductory remarks 49
- **3.2** Microwave frequencies and applications 49
- **3.3** Transmission line structures 52
 - **3.3.1** Imageline ... 52
 - **3.3.2** Microstrip ... 54
 - **3.3.3** Finline .. 54
 - **3.3.4** Inverted microstrip 55
 - **3.3.5** Slotline ... 55
 - **3.3.6** Trapped inverted microstrip 56
 - **3.3.7** Coplanar waveguide (CPW) 56
 - **3.3.8** Coplanar strip (CPS) and differential line 57
 - **3.3.9** Stripline ... 57
 - **3.3.10** Summary of interconnect properties 58
- **3.4** Substrates for hybrid microcircuits 59
 - **3.4.1** FR4 (‘printed circuit board’) 60
 - **3.4.2** Ceramic substrates 60
 - **3.4.3** Softboard ... 63
 - **3.4.4** Overall appraisal — alternative substrates and structures 63
 - **3.4.5** Sapphire — the ‘benchmark’ substrate material 63
- **3.5** Thin-film modules ... 64
 - **3.5.1** Plate-through technique 64
 - **3.5.2** Etch-back technique 65
 - **3.5.3** Equipment required 65
 - **3.5.4** Thin resistive films 65
- **3.6** Thick-film modules .. 66
 - **3.6.1** Pastes, printing and processing for thick-film modules ... 66
- **3.7** Monolithic technology 67
 - **3.7.1** Introduction ... 67
 - **3.7.2** Multilayer interconnect 69
 - **3.7.3** Metallization .. 69
 - **3.7.4** Low-k dielectrics 70
 - **3.7.5** MIC and MMIC approaches compared 71
- **3.8** Printed circuit boards 71
 - **3.8.1** Organic PCBs 73
 - **3.8.2** Ceramic PCBs 74
- **3.9** Multichip modules ... 74
 - **3.9.1** MCM-L substrates 75
4 Microstrip Design at Low Frequencies 83
4.1 The microstrip design problem ... 83
4.1.1 Digital interconnect .. 83
4.1.2 A transistor amplifier input network 84
4.1.3 The geometry of microstrip .. 85
4.2 The quasi-TEM mode of propagation 86
4.3 Static-TEM parameters .. 86
4.3.1 The characteristic impedance Z_0 87
4.3.2 The effective microstrip permittivity ε_{eff} 88
4.3.3 Synthesis: the width-to-height ratio w/h 89
4.3.4 Wavelength λ, and physical length l 90
4.4 Approximate graphically-based synthesis 90
4.5 Formulas for accurate static-TEM design calculations 92
4.5.1 Synthesis formulas (Z_0 and f given) 93
4.5.2 Analysis formulas (w/h and ε_r given) 94
4.5.3 Overall accuracies to be expected from the previous expressions 94
4.6 Analysis techniques requiring substantial computer power 94
4.7 A worked example of static-TEM synthesis 95
4.7.1 Graphical determination ... 96
4.7.2 Accurately calculated results 96
4.7.3 Final dimensions of the microstrip element 97
4.8 Microstrip on a dielectrically anisotropic substrate 97
4.9 Microstrip on a ferrite substrate 103
4.10 Effects of strip thickness, enclosure and manufacturing tolerances ... 105
4.10.1 Effects of finite strip thickness 105
4.10.2 Effects of a metallic enclosure 107
4.10.3 Effects due to manufacturing tolerances 108
4.11 Pulse propagation along microstrip lines 109
4.12 Recommendations relating to the static-TEM approaches 110
4.12.1 The principal static-TEM synthesis formulas 111
4.12.2 Microstrip on a sapphire (anisotropic) substrate 111
4.12.3 Design corrections for non-semiconductor substrates 112

5 Microstrip and Stripline at High Frequencies 113
5.1 The scope of this chapter ... 113
5.2 Dispersion in microstrip .. 113
5.3 Approximate calculations accounting for dispersion 118
5.4 Accurate design formulas ... 122
5.4.1 Edwards and Owens’ expressions 122
5.4.2 Expressions suitable for millimetre-wave design 124
5.4.3 Dispersion curves derived from simulations 128
5.5 Effects due to ferrite and to dielectrically anisotropic substrates .. 130
6.4.1 Dielectric loss 171
6.4.2 Conductor loss 171
6.4.3 Radiation loss 174
6.4.4 CPW with intervening SiO₂ layer 174
6.5 Dispersion .. 174
 6.5.1 Fundamental and theoretical considerations 174
 6.5.2 Results from test runs using electromagnetic simulation 178
 6.5.3 Experimental results 183
6.6 Discontinuities 185
 6.6.1 Step changes in width and separation 186
 6.6.2 Open-circuit 189
 6.6.3 Symmetric series gap 190
 6.6.4 Coplanar short-circuit 192
 6.6.5 Right-angle bends 194
 6.6.6 T-junctions 195
 6.6.7 Air bridges 196
 6.6.8 Cross-over junctions 198
6.7 Circuit elements 198
 6.7.1 Interdigital capacitors and stubs 198
 6.7.2 Filters .. 201
 6.7.3 Couplers and baluns 203
 6.7.4 Power dividers 205
6.8 Variants upon the basic CPW structure 206
 6.8.1 CPW with top and bottom metal shields 206
 6.8.2 Multilayer CPW 206
 6.8.3 Trenched CPW on a silicon MMIC 208
 6.8.4 Transitions between CPW and other media 209
6.9 Flip-chip realizations 211
6.10 Mixers, micromachined structures and other CPW issues ... 214
 6.10.1 Mixers and frequency doubler 214
 6.10.2 GaAs FET characterization and specialized resonators ... 215
 6.10.3 Micromachined structures 216
 6.10.4 Leakage suppression and 50 GHz interconnect 216
 6.10.5 Light dependence of silicon FGCPW 217
6.11 Di®erential line and coplanar strip (CPS) 218
6.12 Summary ... 223

7 Discontinuities in Microstrip and Stripline 225
 7.1 The main discontinuities 225
 7.2 The foreshortened open-circuit 227
 7.2.1 Equivalent end-effect length 228
 7.2.2 Upper limit to end-effect length (quasi-static basis) ... 230
 7.3 The series gap 231
 7.3.1 Accuracy of gap capacitance calculations 233
 7.4 Microstrip short-circuits 233
 7.5 Further discontinuities 235
 7.6 The right-angled bend or ‘corner’ 235
7.7 Mitred or ‘matched’ microstrip bends — compensation techniques . 237
7.8 Step changes in width (impedance steps) . 240
7.8.1 The symmetrical microstrip step . 240
7.8.2 The asymmetrical step in microstrip . 242
7.9 The narrow transverse slit . 242
7.10 The microstrip T-junction . 244
7.11 Compensated T-junctions . 247
7.12 Cross-junctions . 247
7.13 Frequency dependence of discontinuity effects . 250
7.13.1 Open-circuits and series gaps . 250
7.13.2 Other discontinuities . 256
7.13.3 Cross- and T-junctions . 257
7.13.4 Radial bends . 260
7.13.5 Frequency dependence of shunt post parameters . 261
7.14 Recommendations for the calculation of discontinuities . 263
7.14.1 Foreshortened open-circuits . 263
7.14.2 Series gaps . 264
7.14.3 Short-circuits . 264
7.14.4 Right-angled bends: mitring . 264
7.14.5 Steps in width . 265
7.14.6 Transverse slit . 265
7.14.7 The T-junction . 266
7.14.8 The asymmetric cross-junction . 267
7.15 Stripline discontinuities . 267
7.15.1 Bends . 267
7.15.2 Vias . 267
7.15.3 Junctions . 268

8 Parallel-coupled Lines and Directional Couplers . 269
8.1 Structure and applications . 269
8.2 Parameters and initial specification . 270
8.3 Coupled microstrip lines . 271
8.4 Characteristic impedances in terms of the coupling factor (C) . 273
8.5 Semi-empirical analysis formulas as a design aid . 274
8.6 An approximate synthesis technique . 276
8.7 A specific example: design of a 10 DB microstrip coupler . 279
8.7.1 Use of Bryant and Weiss’ curves . 279
8.7.2 Synthesis using Akhtarzad’s technique . 280
8.7.3 Comparison of methods . 280
8.8 Coupled-region length . 281
8.9 Frequency response . 283
8.9.1 Overall effects and Getsinger’s model . 283
8.9.2 More accurate design expressions, including dispersion . 285
8.9.3 Complete coupling section response . 289
8.10 Coupler directivity . 290
8.11 Special coupler designs with improved performance . 291
8.11.1 The ‘Lange’ coupler . 291
8.11.2 The ‘unfolded Lange’ coupler 295
8.11.3 Shielded parallel-coupled microstrips 295
8.11.4 The use of a dielectric overlay 296
8.11.5 The incorporation of lumped capacitors 297
8.11.6 The effect of a dielectrically anisotropic substrate 299
8.11.7 Microstrip multiplexers 300
8.11.8 Multisection couplers ... 301
8.11.9 Re-entrant mode couplers 302
8.11.10 Patch couplers .. 302
8.12 Thickness effects, power losses and fabrication tolerances 304
8.12.1 Thickness effects .. 304
8.12.2 Power losses .. 304
8.12.3 Effects of fabrication tolerances 305
8.13 Planar combline directional couplers 306
8.14 Crosstalk and signal distortion between microstrip lines used in digital systems .. 307
8.15 Choice of structure and design recommendations 310
8.15.1 Design procedure for coupled microstrips, \(C \leq -3 \) dB 310
8.15.2 Relatively large coupling factors (typically \(C \geq -3 \) dB) 311
8.15.3 Length of the coupled region 312
8.15.4 Frequency response .. 313
8.15.5 Coupled structures with improved performance 313
8.15.6 Effects of conductor thickness, power losses and production tolerances ... 314
8.15.7 Crosstalk between microstrip lines used in digital systems 314
8.15.8 Post-manufacture circuit adjustment 314

9 Power Capabilities, Transitions and Measurement Techniques ... 315
9.1 Power-handling capabilities .. 315
9.1.1 Maximum average power \(P_{ma} \) under CW conditions 315
9.1.2 Peak (pulse) power-handling capability 316
9.2 Coaxial-to-microstrip transitions 317
9.3 Waveguide-to-microstrip transitions 319
9.3.1 Ridgeline transformer insert 319
9.3.2 Mode changer and balun 320
9.3.3 A waveguide-to-microstrip power splitter 323
9.3.4 Slot-coupled antenna waveguide-to-microstrip transition 324
9.4 Transitions between other media and microstrip 324
9.5 Instrumentation systems for microstrip measurements 325
9.6 Measurement of substrate properties 328
9.7 Microstrip resonator methods 328
9.7.1 The ring resonator ... 330
9.7.2 The side-coupled, open-circuit-terminated, straight resonator .. 331
9.7.3 Series-gap coupling of microstrips 332
9.7.4 Series-gap-coupled straight resonator pairs 334
9.7.5 The resonant technique due to Richings and Easter 336
9.7.6 The symmetrical straight resonator 337
9.7.7 Resonance methods for the determination of discontinuities other than open-circuits ... 339
9.8 Q-factor measurements ... 340
9.9 Measurements on parallel-coupled microstrips 341
9.10 Standing-wave indicators in microstrip 343
9.11 Time-Domain Reflectometry (TDR) Techniques 344

10 Interconnects and Filters in Passive RFICs and MICs 347
10.1 Radio-Frequency Integrated Circuits (RFICs) 347
 10.1.1 On-chip resistors .. 348
 10.1.2 On-chip capacitors ... 348
 10.1.3 Planar inductors ... 350
10.2 Terminations and attenuators in MIC technology 353
10.3 Further thick and thin film passive components 354
 10.3.1 Branch-type couplers and power dividers 355
 10.3.2 Microstrip baluns ... 360
 10.3.3 A strategy for low-pass microwave filter design 361
 10.3.4 Bandpass filters ... 365
 10.3.5 A worked numerical example of a parallel-coupled bandpass filter 370
 10.3.6 CAD of parallel-coupled bandpass filters 373
 10.3.7 Improvements to the basic edge-coupled filter response 376
 10.3.8 Filter analysis and design including all losses 376
 10.3.9 Bandpass filters with increased bandwidth (>15%) 379
 10.3.10 Further developments in bandpass filter design 380
 10.3.11 Microstrip radial stubs 380
 10.3.12 Dielectric resonators and filters using them 382
 10.3.13 Spurline bandstop filters 383
 10.3.14 Filters using synthetic periodic substrates (electromagnetic bandgap crystals) ... 384
 10.3.15 Passive MICs with switching elements 385
 10.3.16 Isolators and circulators 385

11 Active Digital and Analogue ICs 389
11.1 Introduction ... 389
 11.1.1 High-speed digital circuits 389
11.2 Clock distribution .. 390
11.3 Rotary clockTM distribution 393
 11.3.1 Conceptual basis ... 394
 11.3.2 Circuit model of a rotary clockTM 395
 11.3.3 Case study: a 3 GHz rotary clockTM 398
 11.3.4 Effect of copper interconnect 402
 11.3.5 Summary .. 405
11.4 RF and microwave active devices 408
11.5 Yield and hybrid MICs ... 409
11.6 Amplifiers .. 410
 11.6.1 Low-noise amplifier design strategy 412
 11.6.2 High-gain narrowband amplifier design 414
11.6.3 Design example ... 415
11.7 Custom hybrid amplifiers 417
 11.7.1 Standard MIC amplifier modules 417
 11.7.2 Custom MIC amplifier modules 418
11.8 Balanced amplifiers ... 420
11.9 Amplifiers using MMIC technology 424
 11.9.1 Design of a decade-bandwidth distributed amplifier 424
 11.9.2 W-band MMIC LNAs 426
11.10 Microwave oscillators ... 427
 11.10.1 Example of a Dielectric Resonator Oscillator 429
 11.10.2 DRO oscillator developments 430
 11.10.3 MMIC oscillator example 431
11.11 Active microwave filters 433
11.12 Phase shifters .. 434

Appendix A TRANSMISSION LINE THEORY 435
 A.1 Half-, quarter- and eighth-wavelength lines 435
 A.2 Simple (narrowband) matching 436
 A.3 Equivalent two-port networks 438
 A.4 Chain (ABCD) parameters for a uniform length of loss-free
 transmission line ... 439
 A.5 Parallel coupled transmission lines 440
 A.5.1 Even and odd modes .. 440
 A.5.2 Overall parameters for couplers 441
 A.5.3 Analysis of parallel-coupled TEM-mode transmission lines
 .. 442

Appendix B Q-Factor .. 449
 B.1 Definition .. 449
 B.2 Loaded Q-factor .. 450
 B.3 External Q-factor of an open-circuited microstrip resonator 451

Appendix C Outline of Scattering Parameter Theory 457
 C.1 Introduction .. 457
 C.2 Network parameters ... 457
 C.3 Scattering parameters .. 459
 C.3.1 Scattering parameters for a two-port network 460
 C.3.2 Definitions of two-port S-parameters 462
 C.3.3 Evaluation of scattering parameters 463
 C.3.4 Measurement of scattering parameters 464
 C.3.5 S-parameter relationships in interpreting interconnect
 measurements .. 465
 C.3.6 Multiport S-parameters 466
 C.3.7 Signal-flow graph techniques and S-parameters 468
 C.4 Scattering transfer (or T) parameters 469
 C.4.1 Cascaded two-port networks: the utility of T parameters 470

Appendix D Capacitance Matrix Extraction 471
Preface

Interconnects have achieved a prominent position in determining the performance of high-speed digital, RF and microwave circuits. In digital circuits, interconnect delay exceeds that of individual gates and is the primary determinant of clock speed. In RF and microwave circuits, interconnects and passive elements defined using them are critical circuit components.

This design text is both a sequel and an update to the original well-received first and second editions. The expanded text provides foundations for the accurate design of microstrip components and of circuits applicable to microwave, millimetre-wave and high-speed digital sub-systems.

The text is primarily intended for design engineers and research and development specialists who are active in these areas. It has been our attempt to show the commonalities in the design of interconnects in high-speed digital, RF and microwave applications. This is done by showing the common principles of signal transmission. It is also likely to prove useful to instructors and students in advanced undergraduate and graduate electronics and computer engineering courses.

The direction is strongly toward explaining the fundamentals of operation, and towards useful design formulas and approaches — a repeat coverage of well-documented analyses of microstrip structures has been considered unnecessary and out of place here, but is fully cited.

The work is partly based on research and teaching extending over two decades. Microwave and interconnect courses were presented at La Trobe University (Melbourne, Australia), the University of Bradford (Great Britain), North Carolina State University (Raleigh, North Carolina, U.S.A.), and the University of Leeds (Great Britain). The work is also based on short courses on the signal integrity of and interconnect design for high-speed digital circuits. The majority of the research forming the basis of important sections of this book was undertaken at North Carolina State University and at the Royal Military College of Science (Shrivenham, England).

The text is organized into eleven chapters, leading from the physical principles of signal transmission on interconnects, through the fundamental aspects of interconnect and microstrip design, on to circuit applications in RF, microwave, millimetre-wave and high-speed digital circuits. Additional material, including colour figures, are available at the website for this book http://www.wiley.co.uk/commstech.edwards.html or http://www4.ncsu.edu/ mbs/foundations.html.

The design of high-speed interconnects for digital circuits and of RF and microwave transmission lines has significant common elements, but also significant differences. There are common underlying physical principles, and throughout the text this is stressed. The successful design of the highest performance digital interconnects, for example a clock distribution net, requires considerable transmission line knowledge.
Generally, in treatments in papers and chapters of relevant books ‘just enough’ transmission line theory and technology is presented. Not all of the options are covered. Our approach has been to provide the digital interconnect designer with a comprehensive treatment beginning with physical principles in Chapter 1, as well as more pragmatic approaches in Chapter 2, answering such questions as ‘when are inductive effects important?’ However, the interconnect treatment provides the digital designer with the tools for interconnect design now and in the future. The final chapter considers a number of clock distribution designs and, drawing from the material presented throughout the book, illustrates the importance of transmission line knowledge in the design of the highest performance interconnect. In contrast to how this material is often presented to digital designers, we contend that providing just enough knowledge is not enough to develop advanced and competitive interconnect designs.

This book provides a solid basis for RF, microwave and millimetre-wave design. The material enables the designer to make technology choices, and provides insight that supports the early stages of design. The many examples in the book show how these technology choices are made.

A basic review of interconnects and of TEM-mode transmission line theory is presented in Chapter 1. This is intended to provide the fundamentals for concepts and expressions used in many later chapters. Chapter 2 addresses the unique aspects of interconnects in high-speed digital interconnects. Chapter 3 considers interconnect technology, including interconnect and transmission line structures and the effect of substrate and metallization. This chapter may be used as a source of initial interconnect technology decisions.

Chapters 4 through 8 consider specific transmission line structures and interconnect discontinuities. Considerable insight is provided by using current and charge profiles of the various structures.

The text is also intended to be used in short courses and in graduate level courses. Chapter 9 considers power and current handling capability, transitions between different transmission line structures, and measurement techniques. Design studies are considered in the last two chapters of the book, with Chapter 10 looking at applications of passive interconnects to realize circuit functionality such as filters and lumped element components. The realization of lumped element components is particularly important in analog and RF integrated circuits, and Chapter 11 addresses the use of interconnect design technology in active circuits. For example, in Chapter 11 transmission line principles are used in the development of a digital clock architecture capable of supporting clocking at ten gigahertz or more.

Through these chapters the book presents a unifying foundation for the design of interconnects and microstrips. It then shows application of these lines in a variety of passive and active digital, analog, RF and microwave circuits.

T. C. Edwards and M. B. Steer
May 2000