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Abstract. While high interactivity has been one of the main characteristics of one-
on-one human tutoring, a great deal of controversy surrounds the issue of whether 
interactivity is indeed the key feature of tutorial dialogue that impacts students’ 
learning results. There are two commonly held hypotheses regarding the issue: a 
widely-believed monotonic interactivity hypothesis and a better supported 
interaction plateau hypothesis. The former hypothesis predicts increasing in 
interactivity causes an increase in learning while the latter states that increasing 
interactivity yields increasing learning until it hits a plateau, and further increases 
in interactivity do not cause noticeably increase in learning. In this study, we 
proposed the tactical interaction hypothesis which predicts beyond a certain level 
of interactivity, further increases in interactivity do not cause increase in learning 
unless they are guided by effective tutorial tactics. Overall our results support this 
hypothesis. However, finding effective tactics is not easy. This paper sheds some 
light on how to apply Reinforcement Learning to derive effective tutorial tactics.  
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Introduction 

High interactivity is a key characteristic of one-on-one human tutoring. Whereas a 
classroom lecture can be viewed as monologue consisting of a long sequence of tutor 
instructions or “tell” acts, individual tutoring features much give and take and can be 
viewed as a mixture of tutor questions or elicit acts, students’ responses, and tutor 
instructions. A common assumption, often referred as the monotonic interaction 
hypothesis [11][13], is that greater interactivity causes greater learning. Most Intelligent 
Tutoring Systems (ITSs), especially Natural Language (NL) tutoring systems, are 
designed to be highly interactive.  

However, previous studies have shown that when the content of the instruction is 
strictly controlled to be equivalent in all conditions, highly interactive tutoring (such as 
human tutoring) is seldom more effective than moderately interactive instruction (such as 
step-based NL tutoring systems), even though both are often more effective than low 
interaction instruction (e.g. answer based instruction) [3][6][11]. A detailed review of the 
literature [13] distinguished between the widely-believed monotonic interactivity 
hypotheses and the better supported interaction plateau hypothesis. The former states that 
increase in interactivity causes an increase in learning while the latter states that 
increasing interactivity yields increasing learning until it hits a plateau, and further 
increases in interactivity do not cause noticeably increase in learning. Thus the key 
difference between the two hypotheses is whether increasing interaction would impact 
students’ learning gain or not. The monotonic interactivity hypothesis predicts high > 
moderate while the interaction plateau hypothesis predict high = moderate. 

Most studies cited above did not focus on the role of tutoring tactics in guiding 
interaction and its effects on tutor success. Chi et al and others have showed that human 



tutors may not always select optimal tutorial actions [2][11].  Human tutors have to make 
tutorial decisions from their episodic memory of tutoring sessions and then execute them 
in real time with limited resources. Therefore, in this paper we propose a third hypothesis: 
the tactical interaction hypothesis. It states that increasing interactivity does not yield 
increasing learning unless they are guided by effective tutorial tactics. Tutorial tactics are 
policies used to select the optimal tutorial action at any given time from the available set. 
Thus, we hypothesize that: (high + effective tactics) > moderate and (high + no/ineffective 
tactics) = moderate. 

To investigate the three hypotheses, we focused on two tutorial actions: elicit and tell. 
An elicit asks students a question about the problem at hand. Whereas a tell presents the 
information directly to the students. Figure 1 presents an example comparing elicit and 
tell versions of the same topics extracted from a log file we collected. Both tutorial 
dialogues start and end with the same tutor turns (lines 1 and 5 in (a) and (b)). However, 
the tutor chooses to elicit first then tell in (a) (lines 2-3 and line 4 respectively) and instead 
to tell first and then elicit in part (b) (line 2 and lines 3-4 respectively). Note that (a) and 
(b) cover the same corresponding content. Generally speaking, eliciting more information 
from the students during tutoring results in a more interactive tutorial dialogue. In this 
paper, we defined interactivity in terms of the elicit-tell ratio, which is defined as the 
number of elicits a student received divided by the number of tells he/she received in a 
given tutorial dialogue. The higher this value, the more interactive the tutorial dialogue. 

 

1. Tutor: So let's start with determining the value of KE0. 
2. Tutor: Which principle will help you calculate the rock's instantaneous magnitude of velocity 

at T1? {elicit} 
3. Student: definition of kinetic energy 
4. Tutor: Let me just write the equation for you: ke1 = ½*m*v1^2. {tell} 
5. Tutor: From ke1 = ½*m*v1^2, we get v1^2=ke1/(0.5*m). We substitute… 

(a) Elicit-Tell Version 
 

1. Tutor: So let's start with determining the value of KE0. 
2. Tutor: To calculate the rock's instantaneous magnitude of velocity at T1, we will apply the 

definition of kinetic energy again. {tell} 
3. Tutor: Please write the equation for how the definition of kinetic energy applies to this problem 

at T1 {elicit} 
4. Student: ke1 = ½*m*v1^2 
5. Tutor: From ke1 = ½*m*v1^2, we get v1^2=ke1/(0.5*m). We substitute… 

(b) Tell-Elicit Version 
Figure 1. Elicit vs. Tell 

Unlike the other two hypotheses, validation of the tactical interaction hypothesis 
relies on an important assumption that we have effective tutorial tactics. Most tutorial 
tactics for ITSs are encoded as hand-coded rules that seek to implement cognitive and/or 
pedagogical theories. The theories may or may not have been well-evaluated. Typically, 
system designers and domain expert design tutorial tactics by hand and make many 
nontrivial design decisions. It is often not easy to evaluate these decisions because the 
performance of these tutorial tactics depends on many other factors, such as the difficulty 
of domain content, the student’s competence, the usability of the system, how easily the 
dialogues are understood, and so on. Previous research has primarily treated the 
specification of tutorial tactics as a system design problem: several versions of a system 
are created and the only difference among them is the tutorial tactics used. Data is 
collected with human subjects interacting with these different versions of the system and 
results from students' performance on different versions are statistically compared. Due to 
the costs of experiments, only a handful of policies are typically explored. Yet, many such 
other reasonable tutorial tactics are still possible. 



In recent years, work on the design of dialogue systems has involved several data-
driven methodologies. Among them, Markov decision processes (MDP) and 
Reinforcement Learning (RL) have been most widely applied. In this study, we applied 
RL to semi-automatically induce effective tutorial tactics. We say semi-automatically 
because manual effort was necessary to identify the relevant feature states. We used a 
complex task domain where it is common to view the yet to-be-learned knowledge as 
comprised of several independently learned components, called Knowledge Components 
(KCs) [1]. A KC is "a generalization of everyday terms like concept, principle, fact, or 
skill, and cognitive science terms like schema, production rule, misconception, or 
facet"[12]. For the purposes of our tutoring system these are the atomic units of 
knowledge. Techniques exist to re-engineer the definition of KCs so that they are 
independently learnable [1], and this improves the overall effectiveness of the resulting 
tutoring system. It is commonly assumed that these KCs are learned independently. For 
example, various standardized tests are built based on the assumed independence among 
these KCs. Since KCs are assumed to be learned independently, we argue that tutorial 
tactics specific to each KC should also be induced independently. That is, when the tutor 
is about to mention a KC, whether to use an elicit or a tell should depend on the student’s 
current mastery of that KC, its intrinsic difficulty, and the dialogue history. Thus, the best 
elicit/tell policy for one KC might not be optimal for another. In this study, we have eight 
primary KCs. We induced eight policies and conducted eight tests of three hypotheses, 
once per KC.  

Later results indicated that every student in this study received at least some elicit 
prompts in each KCs, thus based on the standard of [13] the least interactive dialogues we 
collected are still moderately interactive. We expect that on all KCs: 

  
1. If the interactivity hypothesis is correct, the group with higher elicit-tell ratios would 

learn more. 
2. If the interaction plateau hypothesis is correct, students would learn equally well 

regardless of interactivity difference. 
3. If the tactical interaction hypothesis is correct and our RL-based tutorial tactics are 

indeed effective, students trained with effective, more interactive tutorial instruction 
would learn more than those with less effective, lower interactive ones. 

 
First we will briefly describe how we apply RL to the NL tutoring system we used in 

this study. Then we will describe our approach and finally present our results. 

1. Applying RL to NL Tutoring Systems  

RL is a machine learning method that centers on the maximization of expected rewards 
and has commonly used Markov Decision Processes (MDP’s) [9] to model a dialogue. An 
MDP describes a stochastic control process whose state transitions possess the Markov 
property. An MDP formally corresponds to a 4-tuple (S, A, T, R), in which: S = {S1,…, 
Sn}, is a state space. A={A1, …, Am} is an action space represented by a set of action 
variables; T : S × A × S → [0, 1] is a set of transition probabilities between states that 

describe the dynamics of the modeled system; for example:  is the probability that the 
model would transition from state Sj to state Si by taking action Ak. Finally, R : S × A × S 
→ R denotes a reward model that assigns rewards to state transitions and models payoffs 
associated with such transitions. While, π: S → A is defined as a policy.  

ka
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In order to effectively derive tutorial tactics using RL, we followed the following 
procedure (See [4] for details). In the first stage, we built a NL tutoring system named 



Cordillera-explore, in which decisions on when to elicit or tell were made randomly. Then 
a group of students, called the Exploratory group, were trained on it. More specifically, 
they 1) took a background survey, 2) read a textbook covering the target domain 
knowledge, 3) took a pretest, 4) trained on Cordillera-explore, and 5) took a posttest. Each 
individual student’s interaction log together with his/her pre- and post-test scores is 
treated as one whole dialogue. The Exploratory corpus was the collection of these 
dialogues.  

In the second stage, we used the Exploratory corpus to construct the MDP’s 4-tuple 
<S, A, T, R>. Ideally, S should summarize the dialogue history compactly, employing the 
fewest features possible, while retaining the relevant information about the dialogue 
interaction. For RL, as with all machine learning tasks, success is dependent upon 
choosing an appropriate feature set for representing states. We used a procedure that 
began by defining a large set of features. In particular, we started by defining 18 features 
based upon the four categories of features considered by [7] to be relevant for human 
tutors when making their tutorial decisions: autonomy, temporal situation, problem 
solving state, and performance. We then select a small subset from them. For this study 
we only included features that could be computed automatically because hand coded 
dialogue features would be infeasible given that the feature values need to be available in 
real time when the learned policies are used to control the tutoring system.  

For each dialogue in the Exploratory corpus, a scalar performance measure, the 
reward, was needed. We defined reward based on students’ normalized learning gains 
(NLG). More specifically, students were split into two groups by the median value of their 
NLG. We gave the better-performing half of students' dialogues a positive reward of +100 
and the remaining ones a negative reward of -100. The rewards were assigned in the final 
dialogue state. Following [8], we view each student’s dialogue as a trajectory of chosen 
tutorial actions determined by dialogue context and system actions: 

S1 → (A1, R1) → S2 → (A2, R2)… Sn → (An, Rn) 

Here Si → (Ai, Ri) → Si+1 means that at the ith turn, the current state (i.e, context of 
dialogue, students performance) was in state Si, the NL tutor executed action Ai and 
received reward Ri, and then the state changed to Si+1. The first state S1 reflects the 
student’s performance on the pre-test. For each student, the reward is delayed, and thus 
we have R1… Rn-1 all equal to 0 and only the final reward Rn equals to either 100 or -
100 depending on the student’s NLG. The problem of deriving effective tutorial tactics 
thus becomes calculating the optimal policy for certain action decisions in an MDP. To 
calculate the best policy, we used Tetreault and Litman’s tool since it has proven to be 
both reliable and successful [10]. In order to learn a policy for each KC, we annotated our 
tutoring dialogues (final kappa ≥ 0.77 for each of the eight KCs) and action decisions 
based on which KCs a tutor action or tutor-student pair of turns covered. Additionally, we 
have mapped students' pre- and post-test scores to the relevant KCs for each test item. 
While there are other KCs involved in the tutorial dialogue, they appeared significantly 
less frequently and often co-occurred with these eight main KCs. Thus, they are not our 
focus in this study.  

The high cost of collecting human data precludes us from collecting a large 
Exploratory corpus. Given the complexity of task at hand, we therefore need to conduct 
effective feature selection. In this study, we followed a greedy-like search of the feature 
space. More specifically, for each of the 18 features, we employed the MDP to induce a 
single-feature policy. MDP generally requires discrete features, therefore we employed a 
median split to convert all numerical features into binary variables. Thus, for each KC, we 
have 18 single-feature-policies. For each of four categories of features, we selected the 
one feature which produced the single-feature policy with the highest Expected 



Cumulative Reward (ECR) in the category. ECR is calculated by normalizing the value of 
each state by the number of times it occurs in a dialogue and then summing over all states. 
The higher the ECR, the more effective the learned policy is expected to be. The four 
features selected were then used to induce a more complicated four-category-feature 
policy (see Figure 2 for an example). We then picked the one policy that has the highest 
ECR from the 19 learned policies: 18 single-feature policies and one four-category-feature 
policy. We call this resulting policy the Greedy-RL tutorial tactics. Figure 2 shows an 
example of one such policy for KC21 (definition of gravitational potential Energy). 

In Figure 2, line 1 (‘features’) indicates the four features involved in the policy for 
KC21: duration, ProblemComplexity, tellsSinceElicit, and pctCorrectKCSession. Line 2 
(‘cutoff’) lists the median values used to convert the three corresponding features from 
real numbers to binary values. A total of 16 rules were learned: in 8 situations the tutor 
should elicit (line 4), in 5 it would tell (line 5); in the remaining 3 the tutor can do either 
(line 6). For example, “0:MED:1:0” (bolded and underlined in line 4) means when the 
duration since the most recent decision made on KC21 is less than 50s, the 
ProblemComplexity of the current problem is medium, the students has been told at least 
once since the most recent elicit (tellsSinceElicit), and the student’s performance on 
KC21in current session is less than 71.79% correct, then the tutor should elicit the next 
step from the student. As can be seen, the derived four-category-feature tutorial tactics are 
quite subtle.  

 
1. 'features'=[duration,ProblemComplexity,tellsSinceElicit, pctOverallCorrectKC],  
2. 'cutoff' =[ duration =’50.0' tellsSinceElicit ='0.0001' pctCorrectKCSession ='0. 7179' ],  
3. 'policy': 
4. 'elicit: [0:MED:1:0, 1:COMP:1:0, 0:COMP:1:1, 0:MED:0:0, 0:COMP:1:0, 0:MED:1:1, 

0:COMP:0:1, 1:COMP:0:1],  
5. 'tell: [1:MED:0:1, 1:MED:0:0, 1:MED:1:0, 1:MED:1:1, 0:MED:0:1] 
6. 'else: [0:COMP:0:0, 1:COMP:0:0, 1:COMP:1:1] 

Figure 2. A Greedy-RL Policy On KC21: Gravitational Potential Energy 

In the final stage, we replaced the random policy with these Greedy-RL policies and 
called the new system Cordillera-GreedyRL. We then trained a new group of students on 
the new system. All students went through the same training procedure as in Stage 1. 

2. Approach 

2.1. Participants 

All participants in the training were required to have basic knowledge of high-school 
algebra, no experience with college-level physics, and were paid for their time. Each 
student trained during and completed the study in a period of two to three weeks. Data 
was collected in two stages. The first data collection with Cordillera-explore lasted over 
four months during the fall of 2007 and 64 students completed the experiment. The 
second data collection with Cordillera-GreedyRL lasted over three months during spring 
2008 and 37 students completed the experiment. Therefore, we have a total of 101 
students who finished the study: 64 were in the Exploratory group and 37 were in the 
GreedyRL group.  

2.2. Domains & Main Knowledge Components 

The experiment used the Physics work-energy domain as covered in a first-year college 
physics course. The eight primary KCs were: the weight law (KC1), definition of work 



(KC14), Definition of Kinetic Energy (KC20), Gravitational Potential Energy (KC21), 
Spring Potential Energy (KC22), Total Mechanical Energy (KC24), Conservation of Total 
Mechanical Energy (KC27), and Change of Total Mechanical Energy (KC28).  

2.3. Procedure 

All students went through the same online training procedure: 1) background survey, 2) 
textbook, 3) pre-test, 4) training on the tutoring system, and 5) post-test. For each 
principle, the textbook provided a general description and reviewed some examples. The 
textbook was not available to students during any other phase of the experiment. Both 
tests were taken online, and once an answer was submitted, students automatically 
proceeded to the next question without any feedback on the correctness of their answer. 
Students were not allowed to return to earlier questions. The pre- and post-tests were 
identical. There were 33 problems selected from the Physics literature on the tests. In 
phase 4, students first walked through a demonstration problem with Cordillera. Then, all 
students solved the same seven problems in the same order. The seven training problems 
were ordered roughly by increasing complexity. 

2.4. Grading Criteria 

All tests were graded in a double-blind manner by a single experienced grader who was 
not familiar with the hypotheses being tested. The maximum score for each problem was 
1. Additionally, the grader identified all relevant KCs and gave a score for each KC 
application. Each problem was assigned a difficulty weighting so that the total score 
possible on the test was 100 points for 33 problems. We evaluated the student’s 
competence on each KC separately weighted by the problem difficulty. That is, given a 
problem containing KC21 with difficulty 6, the student would receive 6 points if they 
completed the KC21 correctly in that problem irrespective of their work on the other KCs 
in it. All KC-based scores were normalized by dividing with the corresponding total 
maximum possible scores.  

3. Results 

Our data was collected at different times and thus students were not randomly assigned to 
the groups. The Exploratory group had higher incoming competence than the Greedy-RL 
group as measured by pre-test score: t(99) = 2.00, p < 0.05. This fact is important because 
we have found that highly competent students often manage to learn regardless of 
instructional methods [4]. Our results show that students scored significantly higher in the 
posttest than pretest: F(1, 64) = 12.71, p=0.001 for the Exploratory group and F(1, 37) 
=16.061, p=0.000 for the Greedy-RL group respectively. On a KC by KC basis, both 
conditions learned significantly on all the main KCs save for KC14 and KC28. On these 
KCs, no significant difference between pre- and post-test scores was found in the 
Exploratory group: F(1, 64)=0.251, p=0.617 for KC14 and F(1, 64)=2.80, p=0.097 for 
KC28; however, a significant difference was found in the Greedy-RL group: F(1, 
37)=4.10, p=0.047 for KC14 and F(1, 37)=4.175, p=0.045 for KC28 respectively. Thus, 
following the Greedy-RL tutorial tactics on KC14 and KC28, students performed 
significantly better in the posttest than in the pretest but not when the decisions were 
randomly made. This suggests that the derived tutorial tactics may be effective. 

Given the unbalanced incoming competence between the two groups, we used an 
ANCOVA to factor out pretest scores and compared the resulting adjusted posttest scores 
for the two groups We found that the Greedy-RL group had significantly higher adjusted 



post-test scores than the Exploratory group on just one KC: KC21, F(1)= 4.93, p<0.029. 
However, no significant differences were found between the two groups on the adjusted 
scores on the other seven KCs.  
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Figure 3. Compare the elicit-tell ratio across the two groups of students 

We next investigated the interactive characteristics of the derived KC-based tutorial 
tactics by comparing the tutorial dialogues’ elicit-tell ratios between the two groups. For 
the Explore group, the ratios approached 1/1 for each KC, as Cordillera-Explore randomly 
chose between elicit and tell. As Figure 3 shows, the elicit-tell ratio of the Greedy-RL 
group varied depending on the policy, with some KCs getting more elicits than tells (KC1, 
KC14, KC21 and KC28) and some getting more tells than elicits (KC20 and KC24). For 
these KCs, the elicit-tell ratios were significantly different from the elicit-tell ratios of the 
Exploratory group (all are at the level p≤.001). On KC22 and KC27, no significant 
difference was found between the two groups in terms of their elicit-tell ratios. Thus, on 6 
of the 8 main KCs, the Greedy-RL policies clearly resulted in significantly different 
interactive patterns from the random selection. 

4. Discussion 

The monotonic interactivity hypothesis states that more interactivity lead to increased 
learning. If this is true, we would expect the Exploratory group to have learned more than 
the Greedy-RL group on KC20 and KC24. Similarly, on KC1, KC14, KC21, and KC28 
the Greedy-RL group should learn more than the Exploratory. However, the only 
significant difference between the two groups in terms of adjusted post-test scores was on 
KC21. On the other 5 KCs, the groups did not differ. Thus, on 5 out of 6 KCs, the data 
does not provide much support for the monotonic interactivity hypothesis. 

The interaction plateau hypothesis states that more interactivity beyond given point 
will not increase learning and thus students would learn equally well regardless of 
interactivity levels. If this is true, then we expect the students should learn equally across 
the board. However, on KC21 the more interactive group (Greedy-RL) learned more than 
the less interactive group (Exploratory). On the other 7 KCs, the groups did not differ, as 
reported earlier. Thus, neither of these two hypotheses is consistently supported across the 
board.  

Finally, the tactical interaction hypothesis states that more interactivity beyond given 
point does not cause increases in learning unless it is governed by effective the tutorial 
tactics. If this is true and all our derived RL-based policy were indeed effective, we expect 
that on KC1, KC14, KC21, and KC28, Greedy-RL would learn more than the Exploratory 
while KC20 and KC24, no difference should been found. This hypothesis was supported 



on KC21, KC20 and KC24 but not on KC1, KC14, and KC28. One likely explanation is 
that the tutorial tactics we derived for KC1, KC14, and KC28 were not effective enough. 
This is likely given the fact that our state features were relatively restricted and our feature 
selection procedure is quite greedy. Additionally, in subsequent work we found a 
significant correlation between the predicted rewards for the derived policies used in this 
study and the actual improvements made. Moreover, applying improved feature selection 
methods has yielded policies with higher predicted rewards than the Greedy-RL policies 
employed in this study (at least double see [4] for a detailed discussion).  

Therefore, we concluded that the tactical interaction hypothesis is still supported by 
our results but our application of RL in the study was not optimal. This is why we did not 
see clear difference between the two groups on KC1, KC14, and KC28. In particular, our 
features or our Greedy-RL method for selecting them may have been flawed (see [4] for a 
detailed discussion). Overall, our results suggest that the tactical interaction hypothesis 
may be right but deriving effective tutorial tactics is not easy. However, RL seems to be 
an effective, useful tool to derive tutorial tactics.  

Additionally, we have identified a number of questions for future exploration. For 
example, we only included features that can be computed automatically; grader tagged 
features have not been tested.  In future studies, we will employ a larger feature set, better 
policies, will randomly assign subjects to groups, and experiment with new policy 
induction mechanisms.  
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