Proof Techniques

1. Invariants for "tree growing" algorithms.

- Prim's: edges of S are a subset of a MST.
- Dijkstra's: edges in S for shortest paths from s to each vertex in S

S = vertices already in the tree

updates: priority is updated for neighbors of v when v is added, based on
- Prim's: $w(v,t)$
- Dijkstra's: $d(v) + w(v,t)$

where t = the neighbor

2. grey \rightarrow grey

\overrightarrow{abc}

(a) cross
(b) forward/tree
(c) back

DFS Properties

can't happen because a vertex is grey only between its parentheses
Recursion/induction

\[K_1 \leq K_2 \leq \ldots \leq K_{m+1} \]

Suppose \(K_1 \leq K_2 \leq K_3 \leq K_4 \) and smallest is in \(K_2 \).

Solve off-line min for \(K_1 \leq K_2 \cup K_3 - \{\text{smallest} \} \leq K_4 \) and then "insert" the extraction of smallest into the solution.

\[
\begin{array}{c|c|c|c}
\times & y & z \\
\hline
\times & \text{(smallest)} & x \\
\end{array}
\]
4. Static properties

Graph G is semi-connected iff

The dag of SCC's has a path that includes all the vertices (the vertices of the SCC dag, that is, each one of which represents an SCC of the original graph G), semi-connected \(\Rightarrow \) there exists a path that includes all vertices in the SCC dag.

Suppose there is no such path and let \(P \) be the path of the SCC dag having the most vertices. Let \(X \) be a vertex not on \(P \) and let \(X \epsilon \) SCC represented by \(X \). Let \(Y \) be the last vertex on \(P \) that contains only predecessors of \(X \) and \(Z \) be the first vertex the contains only successors. Then \(YX \) and \(XZ \) must be edges of the SCC dag, contradicting our choice of \(P \) as longest. Note: we know that \(Y \) and \(Z \) exist because \(G \) is semi-connected (every vertex must either be a predecessor or successor of \(X \)) and because the SCC graph is acyclic (if any vertex contained both predecessors and successors, there would be a cycle involving \(X \) and that vertex).

Existence of path \(\Rightarrow \) G semi-connected

This part is easy to do directly: Choose any pair of vertices \(u \) and \(v \) and let \(C_u \) and \(C_v \) be their SCC's. If \(C_u = C_v \), we are done. Otherwise, if \(C_u \) precedes \(C_v \) on the path then there's obviously a path from \(u \) to \(v \) in \(G \) and vice versa if \(C_v \) precedes \(C_u \). \(\Box \)