Class definitions
(A is in the class)

- A in NP and for every B in NP, B ∈_p A
- A is accepted by nondeterministic TM within p(lxl) steps where x = input and p is polynomial
- A is accepted by deterministic TM within p(lxl) steps...

The "world view" most people believe

how to prove that A is in the class

1. Prove A ∈ NP
2. Select problem C, known to be NP-complete and show C ∈_p A

- Give a guess and check algorithm for A: (input = x)
 - Guess certificate (trivial but no such mechanism exists)
 - Verify that certificate is proof that x has a "yes" answer

- Give an algorithm for A that requires O(lxl^c) basic operations, where c is constant

Importance of NP-complete problems:
Let A be NP-complete.

1. If we prove that A ∉ P, i.e. a non-polynomial lower bound for A, then P ≠ NP (and lots of other interesting consequences follow, e.g. there exist problems in NP that are neither in P nor NP-complete).

2. If we prove that A ∈ P, i.e. find a polynomial-time algorithm for A, then P = NP -- obviously B ∈ P ⇒ B ∈ NP, now B ∈ NP means B ∈_p A and, since A ∈ P we know B ∈ P as well. The picture above degenerates to

P = NP = NP-complete

... and the world of problem complexity is a lot less interesting
The first known NP-complete problem [Cook, 1971]

\(\text{B} \in \text{NP} \) means there exists a nondeterministic Turing machine \(M \) and a polynomial \(p \), so that input \(x \in B \) (is a \text{"yes"}-instance of \(B \)) if \(M \) accepts \(x \) in \(p(|x|) \) steps.

\[
\begin{align*}
\text{X} & \quad \text{Input to TM for B} \\
\ldots & \quad \text{Transformation} \\
\text{SAT} & \quad \text{Yes/No}
\end{align*}
\]

This part is specific to \(B \) but can be done for any \(B \) in \(\text{NP} \).

So \(B \) in \(\text{NP} \) implies \(B \leq_P \text{SAT} \).

A "canonical" NP-complete problem that's easier to work with: 3-SAT [Karp, 1972]

Formula = \(C_1 \land C_2 \land \ldots \land C_m \)

where each \(C_i = (l_{i1} \lor l_{i2} \lor l_{i3}) \)

and each \(l_{ij} \) is either a variable or its negation.
A positive ("yes") instance of 3-SAT:

\[(x_1 \lor \neg x_2 \lor \neg x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_4) \land (\neg x_2 \lor x_3 \lor \neg x_4)\]

Certificate: \[x_1 = F, x_2 = F, x_3 = T, x_4 = T\]
(one of several possibilities)

A negative ("no") instance of 3-SAT:

\[(x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3)\]

Dominating Set (DS): Given an undirected graph \(G = (V, E)\) and an integer \(K\), does there exist \(S \subseteq V\) such that \(|S| \leq K\) and for all \(u, v \in V\) either \(u \in S\) or there exists \(w \in E\) with \(w \in S\)?

\[G = \]

positive instance with \(K = 3\)

negative instance with \(K < 3\)

Proof that DS is in NP:

1. Guess \(S \subseteq V\)
2. Check that \(|S| \leq K\)
 For \(u, v \in V\) do if \(u \notin S\) then \(\text{neighbor} \leftarrow \text{false}\)
 For \(v \in \text{Adj}[u]\) do if \(v \in S\) then \(\text{neighbor} \leftarrow \text{true}\)
 if not \(\text{neighbor}\) then return "no"
 return "yes"

To prove that DS is NP-complete, we will show that
3-SAT \(\leq_p DS\)

known NP-complete problem

our new problem
Idea (based on guess and check algorithms for the two problems):

<table>
<thead>
<tr>
<th>guess</th>
<th>check</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-SAT</td>
<td>truth values of variables</td>
</tr>
<tr>
<td>DS</td>
<td>$S \subseteq V$ (set of vertices)</td>
</tr>
</tbody>
</table>

Details:

Start with a 3-SAT formula $\phi = C_1 \land \ldots \land C_m$ that uses n variables x_1, \ldots, x_n.

Transform arbitrary 3-SAT instance ϕ to a DS instance $f(\phi)$ as follows:

In $f(\phi)$, $G = (V,E)$ and $K = n$, where

- $V = \{ u_i, \overline{u_i}, w_i \mid 1 \leq i \leq n \} \cup \{ v_j \mid 1 \leq j \leq m \}$
- $E = \{ u_i \overline{u_j}, u_i w_j, \overline{u_i} w_j \mid 1 \leq i \leq n \}$
 $\cup \{ u_i v_j \mid x_i$ is in $C_j \}$ $\cup \{ \overline{u_i} v_j \mid \overline{x_i}$ is in $C_j \}$

For example, if $\phi = (x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_2 \lor \overline{x_3})$

then $f(\phi)$ is:

```
\begin{tikzpicture}
  \node [circle, draw] (u1) at (0,0) {$u_1$};
  \node [circle, draw] (u2) at (1,1) {$u_2$};
  \node [circle, draw] (u3) at (2,0) {$u_3$};
  \node [circle, draw] (w1) at (0,2) {$w_1$};
  \node [circle, draw] (w2) at (1,3) {$w_2$};
  \node [circle, draw] (w3) at (2,2) {$w_3$};
  \node [circle, draw] (v1) at (1,0) {$v_1$};
  \node [circle, draw] (v2) at (2,1) {$v_2$};
  \node [circle, draw] (v3) at (3,0) {$v_3$};

  \draw (u1) -- (u2);
  \draw (u2) -- (u3);
  \draw (u3) -- (u1);
  \draw (u1) -- (w1);
  \draw (u2) -- (w2);
  \draw (u3) -- (w3);
  \draw (u1) -- (v1);
  \draw (u2) -- (v2);
  \draw (u3) -- (v3);
  \draw (v1) -- (v2);
  \draw (v2) -- (v3);
  \draw (v3) -- (v1);

  \node at (3,2) {$K = 3$};
\end{tikzpicture}
```

Note: the w_i's ensure that S includes one of $u_i, \overline{u_i}, w_i$ for each i and no v_j vertices.
Obviously the transformation f can be computed in polynomial time. So it remains to show that ϕ is a positive instance iff $f(\phi)$ is a positive instance. Usually this is done by showing that a certificate for ϕ translates into one for $f(\phi)$ and vice versa.

A certificate y for ϕ is an assignment of truth values that makes each clause true.

If $x_i = T$ in y then put u_i in S

If $x_i = F$ in y then put \overline{u}_i in S

The resulting S is a certificate for $f(\phi)$ because $|S| \leq K$

and u_i is either in S or its neighbor \overline{u}_i is

\overline{u}_i is u_i is

\overline{u}_i has a neighbor (either u_i or \overline{u}_i) in S

y has a neighbor in S: let l be a literal that makes C_j true under y; if $l = x_k$ then $u_k, v_j \in E$ and $u_k \in S$; if $l = \overline{x}_k$ then $\overline{u}_k, v_j \in E$ and $\overline{u}_k \in S$.

Conversely, let S be a certificate for $f(\phi)$. Since each u_i has only two neighbors, u_i and \overline{u}_i, at least one of u_i, \overline{u}_i, w_i must be in S for $1 \leq i \leq n = K$. That leaves no room for other vertices to be in S. To derive a certificate for ϕ

let $x_i = \begin{cases} T & \text{if } u_i \in S \text{ or } w_i \in S \\ F & \text{if } u_i \in S \end{cases}$

Since no v_j can be in S, each v_j must have a neighbor in S.

If that neighbor is u_i for some i then C_j is true because $x_i \in C_j$; if the neighbor is \overline{u}_i for some i then C_j is true because $\overline{x}_i \in C_j$. \square
Proof that CLIQUE is NP-complete (see pp. 947-949 in CLR) uses a different guess and check algorithm for 3-SAT.

\[\text{guess} \quad \text{check} \]

<table>
<thead>
<tr>
<th>3-SAT</th>
<th>CLIQUE</th>
<th>SEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l_i)</td>
<td>(l_{i1} \lor l_{i2} \lor l_{i3})</td>
<td>(SEV)</td>
</tr>
</tbody>
</table>

Note: The CLIQUE problem is as follows, "Given an undirected graph \(G = (V,E) \) and an integer \(k \), does there exist \(SEV \) such that for every pair \(\{u, v\} \subseteq S \), \(uv \in E \)?"

Transformation \(f(\phi) \) where \(\phi = C_1 \land \ldots \land C_m \):

let \(C_i = (l_{i1} \land l_{i2} \land l_{i3}) \)

Then \(f(\phi) = (V,E), k \) where

- \(V = \{v_{ij} \mid 1 \leq i \leq m, 1 \leq j \leq 3\} \)
- \(E = \{v_{ij}v_{jk} \mid l_{ij} \neq l_{jk}\} \)
- \(k = m \)

If \(\phi = (x_1 \lor x_2 \land x_3) \land (x_1 \lor x_2 \land x_3) \)

\[f(\phi) = \]

Let \(\overline{G} = (V, \overline{E}) \) where \(\overline{E} = \{uv \mid u \neq v \text{ and } uv \notin E\} \)

If \(S \) is a clique in \(G \), then \(S \) is an \textbf{independent set} in \(\overline{G} \) (a set of vertices that have no edges among them).

If \(S \) is an independent set in \(G \), then \(V - S \) is a \textbf{vertex cover} in \(G \) (set of vertices such that every edge has at least one vertex in the set).

\(\square \) means \(x_i = T \), the others don't matter

\(\square \) means \(x_3 = T \), \(x_2 = T \) and \(x_i \) doesn't matter