On the Multiplicity of Parts in a Random Partition
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Abstract

Let A be a partition of an integer n chosen uniformly at random among all such
partitions. Let s(\) be a part size chosen uniformly at random from the set of all part
sizes that occur in A. We prove that, for every fixed m > 1, the probability that s()\)
has multiplicity m in A approaches 1/(m(m + 1)) as n — oco. Thus, for example, the
limiting probability that a random part size in a random partition is unrepeated is 1/2.

In addition, (a) for the average number of different part sizes, we refine an asymptotic
estimate given by Wilf, (b) we derive an asymptotic estimate of the average number
of parts of given multiplicity m, and (c¢) we show that the expected multiplicity of a
randomly chosen part size of a random partition of n is asymptotic to (logn)/2.

The proofs of the main result and of (¢) use a conditioning device of Fristedt.
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1 Notation

We will be studying several counting functions related to integer partitions. For clarity, we
begin with the definitions and notation.

e If n is a positive integer, then by a partition, A, of n, we mean a representation

A n= Ziu(i), (1)

2

in which the p’s are nonnegative integers. We use A(n) to denote the set of all
partitions of n and let p(n) = |A(n)].

e In (1) the quantity (i) is the multiplicity of the part 7 in the partition. If it is impor-
tant to designate the partition explicitly then we will use uy(7) for the multiplicity of
the part ¢ in the partition .

e The number of parts in the partition X in (1) is k(X)) = >, pa(%).

e p(n,k) will be the number of partitions of n with k(\) = k.

e The number of distinct part sizes in the partition X is 6(A) = [{7 : pa(7) > 0}].
e ps(n, k) will be the number of partitions of n with §(\) = k.

e We will use angle brackets (...) to denote averages of these quantities. In particular,
(k) and (d), will denote the average values of k(\) and §(\) among all partitions of

n. That is, (k)n = > k- p(n,k)/p(n) and (0), = Y1 k- ps(n, k) /p(n).

e dn(A) = |{i: px(¢) = m}| will be the number of part sizes i of a given multiplicity m,
and p(n, j,m) will be the number of partitions A of n with d,,(\) = j.

® (0m), will be the average value, over all partitions A of n, of 6,,()); that is (d,,), =

e Finally, [z"]{...} will denote the coefficient of 2™ in the expression “...”.

2 The number of different part sizes

The asymptotic relation

6
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for the average number of different part sizes in a partition on n is well known and can be
found in [15]. (Erdds and Lehner [3] proved that the number of different part sizes (§(A),

that is) lies between (1 &+ €)v/6n/m, for almost all partitions \.)



Here, following [15], we will first prove a simple identity involving this function, and
second we will show that with the aid of that identity one can find as many terms of the
asymptotic expansion for (), as one wishes. We illustrate by displaying one more term of
its asymptotic expansion, namely

(0), = —mn2 + (i - %) +o(1) (n — o00). (3)
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We claim that the sum that appears in the numerator of the computation of the average
number of different part sizes, namely >, k - ps(n, k) is just

> k-ps(n, k) =p(0) +p(1) +p(2) +... +p(n —1). (4)
k>1

This identity is well known. It is mentioned in [1], and attributed to Stanley. To prove it
combinatorially, we can map

AO)UA(L) U...UA(n —1) = A(n)

by sending each partition A € A(i) to the partition A € A(n) with one additional part
‘n — 14’ adjoined. We will then find that each partition in A(n) with k& different part sizes is
the image of exactly k£ different partitions from the union, namely those that one finds by
removing exactly one copy of any of its &k different part sizes, which proves (4). O

3 Asymptotic consequences

In view of (4) we have that the average number of different part sizes in a partition of the
integer n is exactly
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But the complete asymptotic (and convergent) series for the partition function p(n) is
known, thanks to the pioneering work of Hardy and Ramanujan [5], and Rademacher [12].
Thus by (5), we can obtain arbitrarily many terms of the asymptotic series for (4), by a
simple exercise in summation. We will sketch one step of this process.

For p(n) itself we have

2 2
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p(n) 43 n W21 ns (6)

To prove (3), we have first, by the Euler-MacLaurin sum formula,

jznjle:f:eaﬁ{ 2 +<2(2i;1)+%>%+0(n_ﬁ_%)}. (7)

_1
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Now if we use (7) to sum (6) and thereby estimate (5), the claimed result (3) follows.



4 The number of parts of multiplicity m in a partition

Our goal in this section is to characterize the counting functions p(n,j,m) and (0,,),. To

this end, for fixed m, we will find the two-variable generating function of p(n, j,m).

Fix n and some set 1 < 43 < i3 < ... < 4. Following the paradigm of inclusion-
exclusion, we want the number of partitions of n that have at least i1,...,7; as parts of
multiplicity m. That is to say, we want the number of partitions A of n such that iq,...,1;
do occur as parts of A, and their multiplicities are all m.

But that is the number of partitions of the integer n —mi; — ... — mi; into parts that
do not include any of i1,...,7; but are otherwise unrestricted. This number is evidently
1

[xn—mi1—...—mij] H - [xn—mi1—...—mij] Hljjzl(l — $zu)
1 — 1 — gt
i1 i z [I>: (1 —2%)
J . $miu(1 _ xi,,)

(2]

HiZI(l —z')
J
= [¢"]P(z) { [[="(- w)}
v=1

where P(z) = [[,(1 —z*)~L.
Note that the factor in brackets contributes 1 to the coefficient of #/ in the product
[T +ta™ (1 - 2).
i>1
If we now sum over all sets 1 <17; <43 < ... < i; we obtain

p(n, j,m) = [z"|P(z) - [] ][ (1 + ta™ (1 — 27)).

i>1

The principle of inclusion-exclusion can, however, be stated in the following form (here
we follow [14]): if A(t) is the generating function for the numbers N,, defined to be the sum
over all sets of r properties of the number of objects that have at least that set of properties,
then h(t — 1) is the generating function for the number of objects that have ezactly each
number of properties.

Hence we have the following result.
Theorem 1 If p(n,j,m) is the number of partitions of n that have ezxactly j parts of mul-
tiplicity m, then

> "t - p(n, j,m) = P(x) [T+t - Da™(1 — z%)}. 9)

n,j>0 i>1



We now use this generating function to find an interesting identity. We claim that

>_J-p(n,j,m) = (p(n —mk) —p(n — (m +1)k)) (10)

j>1 k>0

in which p(+) is the unrestricted partition function. Indeed the identity follows at once by
the usual method of logarithmic differentiation of (9) w.r.t. ¢, setting ¢ = 1, clearing of
fractions, and matching the coefficients of ™ on both sides. We omit the details.

To prove (10) combinatorially, let A;(n) be the set of partitions of n with no part equal
to 7 and let g;(n) = |A;(n)|. It is easy to see that ¢;(n) = p(n) — p(n — 1), for example
by partitioning A(n) into those partitions which do have a part 7, and those which do not.

Thus, (10) becomes
> p(n,gm) =3 gi(n —mi). (11)
i>1 i>1

For the mapping, take
Ai(n—=m)UAs(n—2m)UA3(n —3m)U... = A(n)

as follows. If A is a partition of n — ¢m, in which no part ‘2’ occurs, add m copies of 7 to A
to obtain a partition of n in which part ¢ has multiplicity m.

Conversely, if A is a partition of n in which part ¢ occurs with multiplicity m, delete
the m copies of 7 to obtain a partition of n — mi in which no part has size ¢. Thus, each
partition A € A(n) with exactly j parts of multiplicity m is the image under this mapping
of exactly j different partitions, namely those obtained by deleting all copies of one of the
parts of multiplicity m. This proves (11). O

A consequence is the following.

Theorem 2 The average number of parts of multiplicity m in a partition of n is

_xpln—gm) —pn—jm+1))
<6m>n _]ZZ:I p(n) .

It is easy, with the aid of (7), to find the asymptotic behavior. The result is that for
each fixed m the average number of parts of multiplicity m of a partition of n is

V6 1 V6 V6

<5m>”N%n2 B (m+1)7rn :m(m+1)7rn

M
N |

(n — 00). (12)



5 The total number of parts

Let (x),, denote the average value of () over all partitions A of n, where () is the number
of parts of A. Then if p(n, k) is the number of partitions of n with exactly & parts,

1
(K), = p(n) > k-p(n,k).

E>1

The identity

Y kep(nk) = > p(n—mj) (13)

k>1 m>1j>1
can be established by observing that the following gives a bijection from the set counted
by the right-hand-side to the set counted by the left-hand-side: Given m,j > 1 and A\ €
A(n —myj), add m copies of part j to A to obtain a partition in A(n). Note that for every
k > 1, each partition of n with exactly k parts will be the image of a partition in A(n —mj)
for exactly k pairs (m,j). A proof of (13) by generating functions can be found in [2], p.
296.

The asymptotic behavior of (), was studied in references [7, 8, 9] and is known to be

(K), ~ gn% log n. (14)

The reader might note the factor of logn/2 by which this formula for the average number
of parts differs from (2), for the average number of part sizes, as a measure of the influence
of multiplicities on the averages.

The result (14) appears in [9], although after the calculations in the paper were called
into question by the reviewer [10], a rigorous proof was provided by Kessler and Livingston
[8]. But in fact, an earlier expansion of (), up to an o(1) remainder term can be found in
the fascinating paper of Husimi [7]. (According to Husimi, p(n, k) represents the number of
complexions of a Bose gas of k particles and of energy n distributed over the energy levels
(e = 1,2,3,...) and (k), can be interpreted as the “mean number of excited particles”.

Husimi was motivated to investigate the asymptotic behavior of (k), in order to confirm

or refute the conjecture that (x), ~ n3 which was supported to within a few percent by
experimental evidence for n < 100.)

Since all we need is the leading term in the formula for (k), , we give a short derivation
of that simplified formula below.

In the sum for (k),, the indices m and j are subject to a restriction mj < n — 1. Using
the Hardy-Ramanujan formula

3
chu

p(p) = m(l +0(u72)), (c=m6"2),



(uniformly for p > 1), after simple algebra we get:

pln—mj) _ ] (_em
o = 1o () o m e (-9F)
_ {(1+O(n_%l))exp( cmjn_%), if mj <n/2;
O(exp(—cn2/2)) if mj > n/2.
Thus
(W = D exp(—cmgn3) + Oexp(—cn?)) (V¢ < c/2)

= nic! log

1
1 —ecn 2

= n3(2¢) M logn + O(n?).

(We have used here the Maclaurin formula with the remainder term.)

6 The probability that a part size has multiplicity m

The fact that the average number of parts of multiplicity m and the average number of
distinct part sizes are both proportional to y/n make plausible the following conjecture.
Consider a two-step sampling procedure, in which we first sample uniformly at random
(uar) a partition A of n and second sample uar one of the different part sizes in \. Then the
unconditional probability that the chosen part size has multiplicity m approaches a universal
constant, B, as n tends to infinity. We prove this with £, = 1/(m(m + 1)) in Theorem 3
below.

Let X; be the multiplicity of the part j in a random partition A of n, (that is, X;(\) =
pa(7)); let I; be the indicator of the event {X; > 1}, and let I;,, be the indicator of the
event {X; = m}; j > 1. Then D, = 3,5, I; is the total number of different part sizes
in the random partition. (Of course, E D,, = (d), ~ v6n/m see Sections 2 and 3. Goh
and Schmutz [6] proved the asymptotic normality of D,,, from which it follows that D,
is asymptotic to v6n/m in probability as well.) Likewise, Dy, = > j>1Ljm is the total
number of part sizes of multiplicity m, and

ED,, m = (0m)

n



is sharply estimated in Section 4. We see that, given the random variables X = (X1, X»,...),
the conditional probability p(X) that the randomly selected size has multiplicity m is given
by

Dn m
X — )
p(X) D,
Now p,, the probability in question, is
D
pu = Bp(X) =B (22)), (15)
n

that is, it equals the expected value of p(X).

Theorem 3 The probability that, for a fited m, a randomly chosen part size of a random
partition of n occurs with multiplicity m approaches 1/(m(m + 1)) as n — oo. In short,
limy, 500 o, = 1/(m(m + 1)).

Proof. We know from (2) and (12) that

1

ED, ~ =, EDpu,~——
C

M

s
— = —, 16

em(m + 1) V6 (16)
and that an is typically close to E D,,. So, intuitively, one is justified in replacing D,, in
(15) by n2¢~!. To do this rigorously though, we need to know how unlikely is the event

An::{ P" —1‘25};

nic-!
Such an estimate does not follow from the results in [3], [6], and [15]. Instead, we get a good
bound by using the conditioning device, suggested for the integer partitions by Fristedt [4]
(see also [11]) and patterned after the analogous treatment of random permutations by
Shepp and Lloyd [13]. Namely, introduce the sequence of independent random variables
Y = (Y1,Y2,...), where Yj is geometrically distributed with a parameter ¢,

Pr (Y = k} = (1 - ).

Then, for every fixed ¢, the sequence X has the same distribution as the sequence Y,

conditioned on the event
Bn:=3{> jYj=n
Jj>1

(see [4] for a proof). It is natural to pick g for which Pr (B,) is as large as possible, and
1

—cn 2

Fristedt’s almost optimal choice was to set ¢ = e . For this q,

Pr (B,) ~ const - nt.



Let

Dy = [{iz1:Y>1}|=3 1,
j=1
VS
- [ Lozl
0, if Y; =0,
D
-An = { 1 — 1> 6} :
nic-!
Then
Pr(4,) = Pr(A,|B,)
_ Pr(4,NB,)
N Pr(B,)
< Pr(A,)
- Pr(B,)
= 0(ni Pr(4,)). (17)
So we need to bound Pr(.A4,). This is easy since Y7,Y>,... are independent. Here is a

standard argument. Let u € R be given. Then
E(e'Pr) = H E(e“%)

i>1
= H (1 _qj +6qu)
i>1
< exp ((e“ —1) qu)
i>1
= exp ((e“ — 1)1;1() .

So, for every u > 0, by Chebyshev’s inequality,

Pr{Dn > @(1 +e)} < ((eu — 1)1—"(])’
¢ exp(u®=(1+¢))

c

=

and an almost optimal u (that minimizes the bound) is log(1 + £), which gives an upper
bound .
exp (—nial) , a1 =ay(e) ~ ¢ H[(1 4 €)log(l +¢) —e] > 0.

Analogously, using u = log(1 — ¢) < 0, we obtain

1
nz 1
Pr{Dn < 7(1—5)} < exp (—n?az),

ay = ag(e) ~c e+ (1—¢)log(l —e)].



So .
Pr(A,) <e™™? a>0,

and, combining this bound with (17), we have

1
Pr(4,) <e ™, 0<b<a. (18)

The rest is short and easy. We write

pn = E(p(X))
= E(p(X)14s) +E(p(X))14,)
= El + E2-

By the definition of p(X) and the event AS,

B = (1+0()rE(Dmls)
n?2

— (14 0()) % [E(Dpym) —E(Dpmla,)]. (19)

n:2

Furthermore, by (18),

E(D;,m14,) = O(nPr(A4y))
1
= O(ne=?)
= o(1).
Combining this estimate with (19) and (16), we have
1
E, = mm D) + O(e) +o(1), asn— oco.

It remains to notice that
E; <Pr(4,)=o(l), asmn — oo,

and we conclude, letting n — oo and then ¢ — 0, that

1
lim p, =

- >1
n—00 m(m+1)’ mz=

a

Notes. 1. Analogously to D,, we could have proved that the distribution of D, ,, is
concentrated around ED,, ,,. Consequently, the empirical probability p(X) = D,, /Dy,
that the random part size has multiplicity m, converges, in probability, to 1/(m(m + 1)).
This also implies that p, — 1/(m(m + 1)).

10



2. How will the multiplicity distribution change if we sample a part from the set of all
parts with the (conditional) probability proportional to a part’s size? An answer is not that
obvious, since in a typical partition the small parts ¢ have multiplicities of order n'/2, while
the middle range parts are of order n'/2, but of low multiplicity. In this case the conditional
probability that the selected part’s size has multiplicity m is given by

pX)=" 37,

J: Xj=m

and the unconditional probability is therefore given by

pu =Ep(X) = = 37 jPr(X; = m).

Jj>1
We leave it to the reader to show that
. 6 2m+1
M = e ™2

The sum of the limits is 1 again! And so, as before, the multiplicity is bounded in probability.

3. What if a part is chosen uar among all parts without any size bias? Intuitively, one
should expect the multiplicity to be higher in probability. For this sampling, the conditional
probability of multiplicity m is b
mbUnpm
where P, = P()) is the total number of parts in the random partition A. Erdés and Lehner
(3] proved that, in probability, P, is asymptotic to EP, (= (x),,). Extending our argument
in the proof of Theorem 3, we can also show, for m = o(n!/?), that mDy, m is asymptotic
in probability to

mE (ZI',m) = mY (1—-¢)g™

j>1 j>1
nl/2
- c(m+1)
Therefore, in probability,
2
X))~ —————
p(X) m T Dlogn’
whence 5
P - )~ = o(nl/?).
vt = m) (m+1)logn’ m = o(n'")

Here u,, denotes the random multiplicity of the chosen part. Consequently

1
r (M < w) — 2,
logn

for every x < 1/2. Thus logu, is typically of order logn.

11



7 The expected multiplicity of a part

We now consider, for a random partition A, the average multiplicity of a part size selected
at random from the set of all part sizes occurring in A. Equations (2) and (14) suggest the
following.

Theorem 4 If M, is the expected multiplicity of a randomly chosen part size in o random

partition of n then

logn
M,, ~ g.

Proof. With X, I;, and D,, as defined in the previous section, clearly

X
M, =E (LJ” 7> :
Dy,
Here ;> X; < n; so it can be shown, analogously to the previous argument, that M, is

asymptotic to
M. — E (Zj21 Xj)‘

" ED,
Note that from (14),
6
EZXj = (Kk),, ~ A logn
i>1
and from (2),
6
E D, ~ in%,
s
S0
~ logn
My, ~ My ~ =
a

In contrast, for size-unbiased sampling from the set of all parts discussed in Note 3 of
the previous section, it is the logarithm of the multiplicity which is of order logn.

Acknowledgement. We gratefully acknowledge our debt to a referee who carefully
read the paper and provided us with very useful comments and thoughtful suggestions.
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