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Abstract

Let � be a partition of an integer n chosen uniformly at random among all such
partitions. Let s(�) be a part size chosen uniformly at random from the set of all part
sizes that occur in �. We prove that, for every �xed m � 1, the probability that s(�)
has multiplicity m in � approaches 1=(m(m + 1)) as n ! 1. Thus, for example, the
limiting probability that a random part size in a random partition is unrepeated is 1/2.

In addition, (a) for the average number of di�erent part sizes, we re�ne an asymptotic
estimate given by Wilf, (b) we derive an asymptotic estimate of the average number
of parts of given multiplicity m, and (c) we show that the expected multiplicity of a
randomly chosen part size of a random partition of n is asymptotic to (logn)=2.

The proofs of the main result and of (c) use a conditioning device of Fristedt.

AMS Subject Classi�cations: 05A17, 11P81, 11P82

�Supported in part by NSF grant DMS9302505
ySupported by the Focus on Discrete Probability Program at Dimacs Center of Rutgers University, and

by NSA grant MDA-904-96-1-0053
zSupported in part by NSF grant DMS96227722

1



1 Notation

We will be studying several counting functions related to integer partitions. For clarity, we
begin with the de�nitions and notation.

� If n is a positive integer, then by a partition, �, of n, we mean a representation

� : n =
X
i

i�(i); (1)

in which the �'s are nonnegative integers. We use �(n) to denote the set of all
partitions of n and let p(n) = j�(n)j.

� In (1) the quantity �(i) is the multiplicity of the part i in the partition. If it is impor-
tant to designate the partition explicitly then we will use ��(i) for the multiplicity of
the part i in the partition �.

� The number of parts in the partition � in (1) is �(�) =
P

i ��(i):

� p(n; k) will be the number of partitions of n with �(�) = k.

� The number of distinct part sizes in the partition � is �(�) = jfi : ��(i) > 0gj.
� p�(n; k) will be the number of partitions of n with �(�) = k.

� We will use angle brackets h: : :i to denote averages of these quantities. In particular,
h�in and h�in will denote the average values of �(�) and �(�) among all partitions of
n. That is, h�in =

P
k k � p(n; k)=p(n) and h�in =

P
k k � p�(n; k)=p(n).

� �m(�) = jfi : ��(i) = mgj will be the number of part sizes i of a given multiplicity m,
and p(n; j;m) will be the number of partitions � of n with �m(�) = j.

� h�min will be the average value, over all partitions � of n, of �m(�); that is h�min =P
j j � p(n; j;m)=p(n).

� Finally, [xn]f: : :g will denote the coe�cient of xn in the expression \: : :".

2 The number of di�erent part sizes

The asymptotic relation

h�in �
p
6

�
n

1

2 (n!1) (2)

for the average number of di�erent part sizes in a partition on n is well known and can be
found in [15]. (Erd�os and Lehner [3] proved that the number of di�erent part sizes (�(�),
that is) lies between (1� �)

p
6n=�, for almost all partitions �.)
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Here, following [15], we will �rst prove a simple identity involving this function, and
second we will show that with the aid of that identity one can �nd as many terms of the
asymptotic expansion for h�in as one wishes. We illustrate by displaying one more term of
its asymptotic expansion, namely

h�in =

p
6

�
n

1

2 +

�
3

�2
� 1

2

�
+ o(1) (n!1): (3)

We claim that the sum that appears in the numerator of the computation of the average
number of di�erent part sizes, namely

P
k k � p�(n; k) is justX

k�1

k � p�(n; k) = p(0) + p(1) + p(2) + : : :+ p(n� 1): (4)

This identity is well known. It is mentioned in [1], and attributed to Stanley. To prove it
combinatorially, we can map

�(0) [ �(1) [ : : : [ �(n� 1) =) �(n)

by sending each partition � 2 �(i) to the partition � 2 �(n) with one additional part
`n� i' adjoined. We will then �nd that each partition in �(n) with k di�erent part sizes is
the image of exactly k di�erent partitions from the union, namely those that one �nds by
removing exactly one copy of any of its k di�erent part sizes, which proves (4). 2

3 Asymptotic consequences

In view of (4) we have that the average number of di�erent part sizes in a partition of the
integer n is exactly

h�in =
p(0) + p(1) + : : : + p(n� 1)

p(n)
: (5)

But the complete asymptotic (and convergent) series for the partition function p(n) is
known, thanks to the pioneering work of Hardy and Ramanujan [5], and Rademacher [12].
Thus by (5), we can obtain arbitrarily many terms of the asymptotic series for h�in by a
simple exercise in summation. We will sketch one step of this process.

For p(n) itself we have

p(n) =
1

4
p
3

e�
p

2

3
n

n
� 1

4
p
2�

e�
p

2

3
n

n
3

2

+O

�
e
�
2

p
2

3
n
�
: (6)

To prove (3), we have �rst, by the Euler-MacLaurin sum formula,

nX
j=1

e�
p
j

j�
= e�

p
n
�

2

�n��
1

2

+

�
2(2� � 1)

�2
+

1

2

�
1

n�
+O(n���

1

2 )

�
: (7)

Now if we use (7) to sum (6) and thereby estimate (5), the claimed result (3) follows.
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4 The number of parts of multiplicity m in a partition

Our goal in this section is to characterize the counting functions p(n; j;m) and h�min. To
this end, for �xed m, we will �nd the two-variable generating function of p(n; j;m).

Fix n and some set 1 � i1 < i2 < : : : < ij. Following the paradigm of inclusion-
exclusion, we want the number of partitions of n that have at least i1; : : : ; ij as parts of
multiplicity m. That is to say, we want the number of partitions � of n such that i1; : : : ; ij
do occur as parts of �, and their multiplicities are all m.

But that is the number of partitions of the integer n�mi1 � : : :�mij into parts that
do not include any of i1; : : : ; ij but are otherwise unrestricted. This number is evidently

[xn�mi1�:::�mij ]
Y

i6=i1;:::;i6=ij

1

1� xi
= [xn�mi1�:::�mij ]

Qj
�=1(1� xi� )Q
i�1(1� xi)

= [xn]

Qj
�=1 x

mi� (1� xi� )Q
i�1(1� xi)

(8)

= [xn]P(x)
8<
:

jY
�=1

xmi� (1� xi� )

9=
;

where P(x) = Q
k(1� xk)�1.

Note that the factor in brackets contributes 1 to the coe�cient of tj in the productY
i�1

(1 + txmi(1� xi)):

If we now sum over all sets 1 � i1 < i2 < : : : < ij we obtain

p(n; j;m) = [xn]P(x) � [tj ]
Y
i�1

(1 + txmi(1� xi)):

The principle of inclusion-exclusion can, however, be stated in the following form (here
we follow [14]): if h(t) is the generating function for the numbers Nr, de�ned to be the sum
over all sets of r properties of the number of objects that have at least that set of properties,
then h(t � 1) is the generating function for the number of objects that have exactly each
number of properties.

Hence we have the following result.

Theorem 1 If p(n; j;m) is the number of partitions of n that have exactly j parts of mul-

tiplicity m, then X
n;j�0

xntj � p(n; j;m) = P(x)
Y
i�1

f1 + (t� 1)xmi(1� xi)g: (9)
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We now use this generating function to �nd an interesting identity. We claim thatX
j�1

j � p(n; j;m) =
X
k�0

(p(n�mk)� p(n� (m+ 1)k)) (10)

in which p(�) is the unrestricted partition function. Indeed the identity follows at once by
the usual method of logarithmic di�erentiation of (9) w.r.t. t, setting t = 1, clearing of
fractions, and matching the coe�cients of xn on both sides. We omit the details.

To prove (10) combinatorially, let �i(n) be the set of partitions of n with no part equal
to i and let qi(n) = j�i(n)j. It is easy to see that qi(n) = p(n) � p(n � i), for example
by partitioning �(n) into those partitions which do have a part i, and those which do not.
Thus, (10) becomes X

j�1

j � p(n; j;m) =
X
i�1

qi(n�mi): (11)

For the mapping, take

�1(n�m) [ �2(n� 2m) [ �3(n� 3m) [ : : : =) �(n)

as follows. If � is a partition of n� im, in which no part `i' occurs, add m copies of i to �
to obtain a partition of n in which part i has multiplicity m.

Conversely, if � is a partition of n in which part i occurs with multiplicity m, delete
the m copies of i to obtain a partition of n �mi in which no part has size i. Thus, each
partition � 2 �(n) with exactly j parts of multiplicity m is the image under this mapping
of exactly j di�erent partitions, namely those obtained by deleting all copies of one of the
parts of multiplicity m. This proves (11). 2

A consequence is the following.

Theorem 2 The average number of parts of multiplicity m in a partition of n is

h�min =
X
j�1

p(n� jm)� p(n� j(m+ 1))

p(n)
:

It is easy, with the aid of (7), to �nd the asymptotic behavior. The result is that for
each �xed m the average number of parts of multiplicity m of a partition of n is

h�min �
p
6

m�
n

1

2 �
p
6

(m+ 1)�
n

1

2 =

p
6

m(m+ 1)�
n

1

2 (n!1): (12)
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5 The total number of parts

Let h�in denote the average value of �(�) over all partitions � of n, where �(�) is the number
of parts of �. Then if p(n; k) is the number of partitions of n with exactly k parts,

h�in =
1

p(n)

X
k�1

k � p(n; k):

The identity X
k�1

k � p(n; k) =
X
m�1

X
j�1

p(n�mj) (13)

can be established by observing that the following gives a bijection from the set counted
by the right-hand-side to the set counted by the left-hand-side: Given m; j � 1 and � 2
�(n�mj), add m copies of part j to � to obtain a partition in �(n). Note that for every
k � 1, each partition of n with exactly k parts will be the image of a partition in �(n�mj)
for exactly k pairs (m; j). A proof of (13) by generating functions can be found in [2], p.
296.

The asymptotic behavior of h�in was studied in references [7, 8, 9] and is known to be

h�in �
p
6

2�
n

1

2 log n: (14)

The reader might note the factor of log n=2 by which this formula for the average number
of parts di�ers from (2), for the average number of part sizes, as a measure of the inuence
of multiplicities on the averages.

The result (14) appears in [9], although after the calculations in the paper were called
into question by the reviewer [10], a rigorous proof was provided by Kessler and Livingston
[8]. But in fact, an earlier expansion of h�in up to an o(1) remainder term can be found in
the fascinating paper of Husimi [7]. (According to Husimi, p(n; k) represents the number of
complexions of a Bose gas of k particles and of energy n distributed over the energy levels
(� = 1; 2; 3; : : :) and h�in can be interpreted as the \mean number of excited particles".
Husimi was motivated to investigate the asymptotic behavior of h�in in order to con�rm

or refute the conjecture that h�in � n
2

3 which was supported to within a few percent by
experimental evidence for n � 100.)

Since all we need is the leading term in the formula for h�in, we give a short derivation
of that simpli�ed formula below.

In the sum for h�in, the indices m and j are subject to a restriction mj � n� 1. Using
the Hardy-Ramanujan formula

p(�) =
e2c�

1

2

4
p
3�

(1 +O(��
1

2 )); (c = �6�
1

2 );
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(uniformly for � � 1), after simple algebra we get:

p(n�mj)

p(n)
=

�
1 +O

�
mj

n
3

2

�
+O(n�mj)�

1

2

�
exp

�
�cmj

n
1

2

�

=

(
(1 +O(n�

1

2 )) exp(�cmjn�
1

2 ); if mj � n=2;

O(exp(�cn 1

2 =2)); if mj > n=2:

Thus

h�in =
nX

j=1

X
m�n=(2j)

exp(�cmjn�
1

2 ) +O(exp(�c0n 1

2 )) (8 c0 < c=2)

=
nX

j=1

exp(�cjn� 1

2 )

1� exp(�cjn� 1

2 )
+O(exp(�c0n 1

2 ))

=

nZ
1

exp(�cxn� 1

2 )

1� exp(�cxn� 1

2 )
dx+O(n

1

2 )

= n
1

2 c�1 log
1

1� e�cn
� 1

2

+O(n
1

2 )

= n
1

2 (2c)�1 log n+O(n
1

2 ):

(We have used here the Maclaurin formula with the remainder term.)

6 The probability that a part size has multiplicity m

The fact that the average number of parts of multiplicity m and the average number of
distinct part sizes are both proportional to

p
n make plausible the following conjecture.

Consider a two-step sampling procedure, in which we �rst sample uniformly at random
(uar) a partition � of n and second sample uar one of the di�erent part sizes in �. Then the

unconditional probability that the chosen part size has multiplicity m approaches a universal

constant, �m, as n tends to in�nity . We prove this with �m = 1=(m(m+ 1)) in Theorem 3
below.

Let Xj be the multiplicity of the part j in a random partition � of n, (that is, Xj(�) =
��(j)); let Ij be the indicator of the event fXj � 1g, and let Ij;m be the indicator of the
event fXj = mg; j � 1. Then Dn =

P
j�1 Ij is the total number of di�erent part sizes

in the random partition. (Of course, E Dn = h�in �
p
6n=� see Sections 2 and 3. Goh

and Schmutz [6] proved the asymptotic normality of Dn, from which it follows that Dn

is asymptotic to
p
6n=� in probability as well.) Likewise, Dn;m =

P
j�1 Ij;m is the total

number of part sizes of multiplicity m, and

EDn;m = h�min
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is sharply estimated in Section 4. We see that, given the random variablesX = (X1;X2; : : :),
the conditional probability �(X) that the randomly selected size has multiplicitym is given
by

�(X) =
Dn;m

Dn
:

Now �n, the probability in question, is

�n = E�(X) = E

�
Dn;m

Dn

�
; (15)

that is, it equals the expected value of �(X).

Theorem 3 The probability that, for a �xed m, a randomly chosen part size of a random

partition of n occurs with multiplicity m approaches 1=(m(m + 1)) as n ! 1. In short,

limn!1 �n = 1=(m(m+ 1)).

Proof. We know from (2) and (12) that

EDn � n
1

2

c
; EDn;m � n

1

2

cm(m+ 1)
; c =

�p
6
; (16)

and that Dn is typically close to E Dn. So, intuitively, one is justi�ed in replacing Dn in
(15) by n

1

2 c�1. To do this rigorously though, we need to know how unlikely is the event

An :=

����� Dn

n
1

2 c�1
� 1

���� � "

�
;

Such an estimate does not follow from the results in [3], [6], and [15]. Instead, we get a good
bound by using the conditioning device, suggested for the integer partitions by Fristedt [4]
(see also [11]) and patterned after the analogous treatment of random permutations by
Shepp and Lloyd [13]. Namely, introduce the sequence of independent random variables
Y = (Y1; Y2; : : :), where Yj is geometrically distributed with a parameter qj,

Pr fYj = kg = (1� qj)qjk:

Then, for every �xed q, the sequence X has the same distribution as the sequence Y,
conditioned on the event

Bn :=

8<
:
X
j�1

jYj = n

9=
;

(see [4] for a proof). It is natural to pick q for which Pr (Bn) is as large as possible, and

Fristedt's almost optimal choice was to set q = e�cn
� 1

2 . For this q,

Pr (Bn) � const � n� 3

4 :
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Let

Dn := jfj � 1 : Yj � 1gj =
X
j�1

Ij;

Ij :=

(
1; if Yj � 1;
0; if Yj = 0;

An =

����� Dn

n
1

2 c�1
� 1

���� � "

�
:

Then

Pr(An) = Pr(AnjBn)

=
Pr(An \Bn)

Pr(Bn)

� Pr(An)

Pr(Bn)

= O
�
n

3

4 Pr(An)
�
: (17)

So we need to bound Pr(An). This is easy since Y1; Y2; : : : are independent. Here is a
standard argument. Let u 2 R be given. Then

E(euDn) =
Y
j�1

E(euIj )

=
Y
j�1

�
1� qj + euqj

�

� exp

0
@(eu � 1)

X
j�1

qj

1
A

= exp

�
(eu � 1)

q

1 � q

�
:

So, for every u > 0, by Chebyshev's inequality,

Pr

(
Dn � n

1

2

c
(1 + ")

)
�

exp
�
(eu � 1) q

1�q
�

exp(un
1

2

c (1 + "))
;

and an almost optimal u (that minimizes the bound) is log(1 + "), which gives an upper
bound

exp
�
�n 1

2a1
�
; a1 = a1(") � c�1 [(1 + ") log(1 + ")� "] > 0:

Analogously, using u = log(1� ") < 0, we obtain

Pr

(
Dn � n

1

2

c
(1� ")

)
� exp

�
�n 1

2 a2
�
;

a2 = a2(") � c�1 ["+ (1� ") log(1� ")] :

9



So

Pr(An) � e�an
1

2 ; a > 0;

and, combining this bound with (17), we have

Pr(An) � e�bn
1

2 ; 0 < b < a: (18)

The rest is short and easy. We write

�n = E (�(X))

= E
�
�(X)IAc

n

�
+E (�(X))IAn)

= E1 +E2:

By the de�nition of �(X) and the event Ac
n,

E1 = (1 +O("))
c

n
1

2

E(Dn;mIAc
n
)

= (1 +O("))
c

n
1

2

[E(Dn;m)�E (Dn;mIAn)] : (19)

Furthermore, by (18),

E(Dn;mIAn) = O(nPr(An))

= O(ne�bn
1

2 )

= o(1):

Combining this estimate with (19) and (16), we have

E1 =
1

m(m+ 1)
+O(") + o(1); as n!1:

It remains to notice that

E2 � Pr(An) = o(1); as n!1;

and we conclude, letting n!1 and then "! 0, that

lim
n!1�n =

1

m(m+ 1)
; m � 1:

2

Notes. 1. Analogously to Dn, we could have proved that the distribution of Dn;m is
concentrated around EDn;m. Consequently, the empirical probability �(X) = Dn;m=Dn

that the random part size has multiplicity m, converges, in probability, to 1=(m(m + 1)).
This also implies that �n ! 1=(m(m+ 1)).
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2. How will the multiplicity distribution change if we sample a part from the set of all
parts with the (conditional) probability proportional to a part's size? An answer is not that
obvious, since in a typical partition the small parts i have multiplicities of order n1=2, while
the middle range parts are of order n1=2, but of low multiplicity. In this case the conditional
probability that the selected part's size has multiplicity m is given by

�(X) =
m

n

X
j:Xj=m

j;

and the unconditional probability is therefore given by

�n = E�(X) =
m

n

X
j�1

jPr(Xj = m):

We leave it to the reader to show that

lim
n!1�n =

6

�2
2m+ 1

m(m+ 1)2
; m � 1:

The sum of the limits is 1 again! And so, as before, the multiplicity is bounded in probability.

3. What if a part is chosen uar among all parts without any size bias? Intuitively, one
should expect the multiplicity to be higher in probability. For this sampling, the conditional
probability of multiplicity m is

�(X) =
mDn;m

Pn
;

where Pn = P (�) is the total number of parts in the random partition �. Erd�os and Lehner
[3] proved that, in probability, Pn is asymptotic to EPn (= h�in). Extending our argument
in the proof of Theorem 3, we can also show, for m = o(n1=2), that mDn;m is asymptotic
in probability to

mE

0
@X
j�1

Ij;m

1
A = m

X
j�1

(1� qj)qjm

� n1=2

c(m+ 1)
:

Therefore, in probability,

�(X) � 2

(m+ 1) log n
;

whence

Pr(un = m) � 2

(m+ 1) log n
; m = o(n1=2):

Here un denotes the random multiplicity of the chosen part. Consequently

Pr

�
log un
logn

� x

�
! 2x;

for every x < 1=2. Thus log un is typically of order logn.
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7 The expected multiplicity of a part

We now consider, for a random partition �, the average multiplicity of a part size selected
at random from the set of all part sizes occurring in �. Equations (2) and (14) suggest the
following.

Theorem 4 If Mn is the expected multiplicity of a randomly chosen part size in a random

partition of n then

Mn � log n

2
:

Proof. With Xj , Ij, and Dn as de�ned in the previous section, clearly

Mn = E

 P
j�1Xj

Dn

!
:

Here
P

j�1Xj � n; so it can be shown, analogously to the previous argument, that Mn is
asymptotic to

~Mn =
E (

P
j�1Xj)

EDn
:

Note that from (14),

E
X
j�1

Xj = h�in �
p
6

2�
n

1

2 log n

and from (2),

E Dn �
p
6

�
n

1

2 ;

so

Mn � ~Mn � log n

2
:

2

In contrast, for size-unbiased sampling from the set of all parts discussed in Note 3 of
the previous section, it is the logarithm of the multiplicity which is of order logn.
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