Array Manipulations and 2-D Arrays

CSC 116 – Section 002
April 4, 2005

Finding a value in an array

• Loop through the array until the value is found
• Implementation: for loop and an integer to record the location where the first value is found.
Finding a value in an array

- Finish the following piece of code:
  ```java
  public int findValue(int[] a, int value) {
    int location = -1;
    for(int x = ___; x <___; x++) {
      if(a[___] == value) {
        location = ___;
        return ___;
      }
    }
    return ___;
  }
  ```

Counting Occurrences

- Loop through an array and increment a counter every time a value is found
- Implementation: for loop and counter that is incremented
Counting Occurrences

- Finish the following piece of code

public int countOccur(int[] a, int value) {
 int count = 0;
 for(int x = ___; x < ___; x++) {
 if(a[___] == ___) {
 ___;
 }
 }
 return ___;
}

Removing an Element

- An array is a fixed size container, however, you can use a partially filled array to emulate a variable sized container
- Unsorted Array – copy the last element into the position that you want to delete and decrement counter
- Sorted Array – shift elements above the position to be deleted down and decrement counter
 – Must start shifting at the point of removal
Removing an Element (2)

- Removing from an unsorted array

5 36 72 14
Counter = 4

5 36 72 14
Counter = 4

5 14 72 14
Counter = 3

Removing an Element (3)

- Removing an element from a sorted array

5 14 36 72
Counter = 4

5 14 36 72
Counter = 4

5 36 72 72
Counter = 3
Inserting an Element

- An array is a fixed size container, however, you can use a partially filled array to emulate a variable sized container
- Unsorted Array – add element at end of list (if room) and increment counter
- Sorted Array – locate where to insert element (if room), shift elements above position up one, insert element, increment counter.
 - Start shifting at last valid element (index counter-1)

Inserting an Element (2)

- Inserting an element into an unsorted array
- ArrayManipulations.unsortedInsert(12)

<table>
<thead>
<tr>
<th>5</th>
<th>14</th>
<th>72</th>
<th></th>
<th>Counter = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>14</td>
<td>72</td>
<td>12</td>
<td>Counter = 4</td>
</tr>
</tbody>
</table>
Inserting an Element (3)

- Inserting an element into a sorted list
- `a.insert(12)`

<table>
<thead>
<tr>
<th>5</th>
<th>36</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counter = 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>36</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>36</td>
<td>72</td>
</tr>
<tr>
<td>Counter = 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

String Split

- `split(String regularExpression, int limit)` is a method of the String class which can be used in place of StringTokenizer
 - StringTokenizer is being deprecated in new versions of Java
- A given String is divided up based on a given regular expression
 - Ex: “\s” splits on white space separations
 - Info about regular expressions can be found here: [http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html#sum]
Sting Split Example

```java
public class StringSplit {
    public static void main(String[] args) {
        String input = "This is an example.";
        String[] output = input.split("\s");
        System.out.println("The input is: "+input);
        System.out.println("The output is: ");
        for (int i=0; i < output.length; i++)
            System.out.println(" "+output[i]);
    }
}
```

© 2005 Sarah E. Smith

2D Arrays

- 2D arrays are useful to represent matrices and tables
- Creating a 2D array:
 int [][] powers = new int [10][8];
- Accessing rows:
 System.out.println("Num rows: "+
 powers.length);
- Accessing columns of rows:
 System.out.println("Num cols in row 0: "+
 powers[0].length);

© 2005 Sarah E. Smith
Populating a 2D Array

```java
int [][] powers = new int [10][8];
for(int x = ___; x < ___; x++) {
    for(int y = ___; y < ___; y++) {
        powers[ ___ ][ ___ ] =
                          (int)Math.pow(___, ___);
    }
}
```

References

- Jason Schwarz’s Lecture 22 slides:
 http://courses.ncsu.edu/csc116/