THE CREATION OF DESIGN MODULES FOR USE IN ENGINEERING DESIGN EDUCATION

Garrett Foster
Graduate Research Assistant
North Carolina State University
Raleigh, North Carolina, USA
gdfoster@ncsu.edu

Micah Holland
Graduate Research Assistant
North Carolina State University
Raleigh, North Carolina, USA
mdhollan@ncsu.edu

Scott Ferguson
Assistant Professor
North Carolina State University
Raleigh, North Carolina, USA
scott_ferguson@ncsu.edu

William Deluca
Associate Professor
North Carolina State University
Raleigh, North Carolina, USA
vwdeluca@ncsu.edu

1Corresponding author

ABSTRACT
Industry demands that graduating engineers possess the ability to solve complex problems requiring multidisciplinary approaches and systems-level thinking. Unfortunately, current curricula often focus on analytical approaches to problem solving. Further, adding courses focused solely on engineering design is often unachievable due to the large amount of material covered in today’s undergraduate engineering curricula. Combined, these prevent a comprehensive focus on engineering design education from being realized. To overcome these time and resource constraints, this paper proposes the use of computational modules within current courses. The investigators hypothesize that the modules would eliminate the repetitive analysis barrier in design problems, thus allowing for design-related experiences to be included earlier in the curricula as opposed to postponing it to a capstone experience. Four major hurdles that hinder successful integration of modules in current engineering courses are: a) engaging students such that they will want to use the modules; b) ensuring the modules are easy to use; c) reducing the complexity of deploying the modules into the classroom; and d) providing educational value. To address these issues, this paper treats the design of the modules as a product design problem. This paper presents the redesign process followed to improve two different design modules planned for implementation in the engineering curriculum at North Carolina State University. Additionally, this research indicates that using a formal redesign process enhances a module’s ability to overcome the hurdles listed above.

1. INTRODUCTION
Recent events have demonstrated that our nation continues to struggle to develop complex engineered systems. A prime example is Boeing’s new 787 aircraft, which was delivered more than three years late due to design and production challenges [1] with a program cost exceeding $32 billion [2]. It is anticipated that such systems will only continue to become more prevalent as the same technological advancements that drive societal improvements lead to tightly coupled engineered systems that exhibit complex component interactions [3]. This has created a new generation of engineering challenges in the areas of energy, environmental management, food and water, housing, health, and transportation [4]. One approach to combat the complexity in these systems is to divide the problem into smaller segments such that more resources, human or computational, can be used to work on the problem in parallel. However, this leads to a new problem of how to handle the interactions between the different segments [5,6]. Delegating this task to a single person is a poor strategy, as a typical complex engineered system is too complicated and possesses too much information [7]. Instead, utilizing a diverse team of engineers that are skilled in multidisciplinary approaches and systems-level thinking is a better strategy.

One way to develop this ability to solve complex, multidisciplinary problems is to teach a variety of problem solving techniques within the undergraduate curriculum [7,8]. These initial problem solving skills serve as the foundation for learning how to develop complex engineered systems [9]. Dutson et al. [10] state that capabilities related to system
design, integration, and synthesis are what industry now requires of graduating engineers. This view is enforced by a National Science Board report [3], which claims “companies want engineers with passion, some systems thinking, an ability to innovate, an ability to work in multicultural environments, an ability to understand the business context of engineering, interdisciplinary skills, communication skills, leadership skills, an ability to adapt to changing conditions, and an eagerness for lifelong learning.” Recent graduates are also discovering that technical skills can more quickly become obsolete as markets become more international. To maximize the competitiveness of US engineering students, the National Science Board [3] identifies that the context of engineering education must adapt to ensure that students more directly meet today’s industrial needs.

Research in engineering education has shown that improving a student’s ability to solve complex, multidisciplinary problems is accomplished by creating a design thread, or design spine [11], where at least one design course is featured each semester [12]. A Phase I report designed to promote systematic innovation in engineering education published by the American Society for Engineering Education [13] states “...it is equally important that students have design-related experiences early in their academic careers and not wait for the senior design capstone experience to do ‘real engineering’.” This conclusion was reached after it was shown that a one-way transition from theory-based courses to an unstructured design project was not a particularly effective way for students to learn. Instead, there should be a "continuing back-and-forth" between theoretical principles and design applications as students gain experience [14–16].

Unfortunately, adding courses focused on engineering design education is often unachievable due to the large amount of material covered in today's undergraduate engineering curricula. Instead, this research begins to explore whether the process of design can be integrated into the existing curricula through the use of discipline specific computational design software, which this paper refers to as “modules”. Computational modules have the ability to overcome the time and resource constraints that often make it difficult to systematically evaluate and narrow down candidate solutions in a classroom setting. From preliminary interviews with faculty and students, and insights gained from literature, this paper identifies four major hurdles that hinder successful integration of modules in current engineering courses. These hurdles are shown in List 1.

List 1. Implementation Hurdles

- Engaging students such that they will want to use the modules
- Ensuring the modules are easy to use
- Reducing the complexity of deploying the modules
- Providing educational value

If these modules were a commercial product, it would be fairly typical for them to go through a product design process to improve their value to the customer. Therefore, the objective of this paper is to extend the product design process to the creation of computational modules used for engineering education.

This section discussed the motivation for using a product design process on two different modules for use in undergraduate engineering curriculum at North Carolina State University. In the next section, background material is introduced. Section 3 discusses the process of redesigning the two different Modules. Lessons learned from the redesign process are presented in Section 4. Finally, closing remarks conclude the paper in Section 5, along with a discussion of future research.

2. RELATED WORK

This research is focused on developing educational engineering design software for undergraduate students. A brief overview of both the use of computational tools in engineering education and engineering design software is discussed below.

2.1 Computational Tools in Engineering Education

The use of computational tools has increased significantly in engineering education over the last several decades. Today's engineering student is expected to be proficient in different computer languages, use generic software (spreadsheets, word processors, presentation software) and, by their senior year, to have gained experience in discipline-specific tools. While computational competency, proficiency, and fluency are in themselves building blocks of a future engineer's success, computational tools also play a particularly important role in engineering design, and the lack of adequate computational tools produces a barrier to design in engineering education primarily due to a "repetition barrier". To address the need for computational tools in engineering education, researchers have begun to explore cyber-infrastructures that foster education and learning [17]. In a design education context, Mund et al. [18] argue that the incorporation of computational and design tools in modern engineering courses is inevitable if we are to properly prepare students for engineering practice. Computer-Aided Drafting and Design (CADD) software and advanced analysis packages allow students to analyze problems more quickly, and in a greater level of detail, than using hand calculations. However, a constant challenge is ensuring that students will adopt software options made available to them. Philpot [19] hypothesized, when developing MDSolids, that students will adopt educational software if it helps them better understand specific homework problems or immediate course concerns. Software can then be designed to simulate highly specified situations that represent learning objectives predefined by the teacher [10]. However, such rigidity can hamper adoption and dissemination. If flexibility is increased, software can solve problems of specific interest to the student [18]. Such software capabilities can foster problem solving skills that are not inherent to traditional lectures or homework assignments [19]. By performing traditionally time-consuming analyses quickly, design software allows students to focus on the more creative aspects of design. Furthermore, the ability to solve complex
problems allows students to better appreciate the multidisciplinary aspect of many engineering problems [18] and realize the power of the analytical tools and concepts earlier in the semester. Other benefits of using software to improve design education include the ability for students to arrive at the correct solution, fostering 'what-if' analyses, ensuring solution repetition, and facilitating problem visualization.

A review of engineering education research papers in the Journal of Engineering Education and the International Journal of Mechanical Engineering Education involving engineering software yielded limited results. In papers that were found, many improvements and implementations occurred at the upper-end of the engineering curriculum [19–21]. Often, discipline-specific software introduced at this stage of the curriculum doubles as the software packages commonly used in industry. Introducing software tools at the freshman and sophomore levels can also be more challenging than later in the curriculum. Research has shown that the impact of computer software on the teaching of fundamental concepts in mechanics of materials courses, for example, has been less than successful [19]. Further, most software tools are rarely multidisciplinary in nature.

2.2 Engineering Design Software

To address the multidisciplinary and iterative nature of engineering design problems, research within the engineering design community has produced software tools with potential applications in engineering education. These computational tools overcome the time and effort limitations of repetition in hand-performed calculations and drawings, called the "repetition barrier", as well as other barriers associated with collecting information and learning from experience. Design repositories (DR), for example, have seen increased usage in engineering design research and are a means of exchanging general knowledge about a design [22] while constructing a knowledge base to represent, archive, and search product design information [23]. The knowledge-centric basis of a DR allows for the retrieval of design data that goes beyond charts and tables, including the ability to search for components that satisfy required functions, access to ideas of previous users, visual representations of system behavior, and automated concept generation [24–28]. In educational settings, DR research has shown that students are motivated by the use of repositories [29] and that students can spend more time on cognitive tasks rather than spatial layout tasks [23]. One major application of DRs in the classroom has been to facilitate product dissection efforts [30], providing a common place for groups to exchange knowledge and capture information for future re-use that would have otherwise been lost.

Noting that the design of large scale systems is commonly conducted in a distributed design environment, research by Gurmani and Lewis [31] developed a computer-based infrastructure to facilitate communication and the passage of information using Really Simple Syndication (RSS) feeds. The intent of this work was to reduce the possibility of errors due to inadequate information communication and handling among the distributed subsystems. They proposed that errors could be caused by "loss of design information emails, corruption of attachments that include product data, duplication of files at multiple locations, and different software being used to complete the same design task." This work, however, has yet to be fielded in an educational environment.

As an illustrative case study, the Applied Research Laboratory Trade Space Visualizer (ATSV) supports performance space exploration in conceptual design [32–34]. Software tools for multidimensional visualization are typically designed to facilitate visual steering, often referred to as "Design by Shopping" [35]. ATSV is designed to handle large datasets from complex systems and allows a user to apply constraints and preferences in a real-time environment. In doing so, designers can simulate a large number of alternatives and visualize them while forming preferences to aid the selection of the best design. While "expert" users can leverage the full ATSV toolset, recent research suggests that novice users use multi-dimensional data visualization tools ineffectively [36]. In fact, experimental testing showed the quality of the design for novice users did not significantly improve over random design/performance space sampling. The inability for novice users to effectively use ATSV in a design setting was attributed to users using only a subset of the tools available - those they were comfortable with after limited training [36]. In the implementation of DRs, research demonstrated that user interfaces must be designed to accommodate the student, students must be properly trained on the software, and students must believe that use of the tool will be worthwhile to their education experience [30]. Additionally, traditional tutorial-based software promotes familiarity at the expense of overall applicability. Worksheets and analysis packages still require an initial investment in learning the software, while outputting information in the form of tables can be hard for students to visualize. This issue is significant, as Mund et al. [18] propose that academic environments tend to place a greater emphasis on the scientific aspects of the model while commonly underestimating the difficulties associated with developing accommodating user interfaces.

Even when using standard software packages, barriers can exist in the classroom. In addition to the repetition barrier, which is arguably the most significant barrier to design in early engineering education, Ahlstrom and Christie [37] reported that a majority of time was spent trying to teach students to use and understand Matlab for the first time rather than understanding and analyzing the problem - the original aim of the exercise. Understanding how to use the software is only possible after students understand the theory behind the application. Therefore, adequately teaching theory before introducing software applications is another barrier that educators must overcome. Mund et al. [18] note that in the "ideal case, a time lag of six to eight weeks (of teaching analysis fundamentals) was observed to be necessary before the software was introduced."

Finally, Feisel and Rosa [38] state that simulations can lose value if they are too rigid, the models driving them are too unrealistic, or if the simulated results do not match expected real-world behavior. To overcome these barriers, Philpot [19] suggests that software should be: a) easy to use, b) versatile in
the types of problems that can be solved, c) strongly visual, and d) informative as to how or why calculations are used.

This section presented background on engineering design software and the use of computational software in engineering education. This paper will treat the design of two modules as a product design problem. The process of developing, implementing, and testing the modules is discussed in the next section.

3. Product Design Process

This section is broken into the four main activities performed during the redesign of two modules. The two modules used in this study were an airfoil design module and a water rocket propulsion system design module. A general flowchart of the process followed can be seen in Figure 1.

Subsection 3.1 discusses the process of acquiring customer needs as well as insights from the activity. The second subsection covers the thought process used to translate the customer needs into engineering requirements and the justification for introducing objectives into the process. Subsection 3.3 discusses highlights from the concept generation process in addition to describing some of the more interesting ideas chosen for the final concepts. The final subsection discusses the criteria chosen and the methodology used to evaluate the prototypes against it. Together these subsections encompass the early portion of the design phase described in many popular design textbooks [39–41].

3.1 Stakeholder Needs and Preference Identification

The goal of this activity is to gain an understanding of stakeholder needs or preferences. For this research, the term ‘stakeholder’ referred to both students and faculty, as they were expected to have different perspectives and uses for the product. To elicit their needs and preferences, one-on-one interviews were performed with four engineering faculty and six undergraduate engineering students ranging from sophomore to senior level. Interviews were started by explaining the motivation for incorporating modules into the curricula. Initially interviewees were asked open ended questions such as:

- What are your perceptions of software use in the classroom?
- Can you walk me through the process of how you used the software?
- What might an assignment using software look like?

The second part of the interview consisted of allowing the interviewees to interact with a first version of the modules (Figures 2-3) while being asked what they liked, disliked, or would have changed. A notebook was kept during the interview process to quickly capture as much of the information as possible. The following are some of the more interesting observations that were recorded (Lists 2-4). For organizational purposes, stakeholder needs and preferences are broken down into three different areas: expected observations, unexpected observations, and expected but unobserved observations.

Figure 1. Product Design Process

![Figure 1. Product Design Process](image)

3.1 Stakeholder Needs and Preference Identification

![Figure 2. Original Airfoil Module](image)

![Figure 3. Original Propulsion Module](image)
List 2. Expected and Observed Stakeholder Preferences/Needs

- Within the student group, there was apprehension towards new software.
- Within the student group, graphical user interfaces were seen as “easier” than command line or text editing.
- Within the student group, there was a tendency to click buttons at random.
- Within the student group, there was a need to have some initial guidance.
- Within the student group, there was a need to limit the number of pop-ups or distractions.
- Within the faculty group, preference was given towards using the modules outside of class.
- Within both groups, there was a need to provide adequate documentation.

Since this list consists of expected observations there were not any major insights gained. However, it was interesting to find that documentation or guidance came up in almost every interview.

List 3. Unexpected and Observed Stakeholder Preferences/Needs

- Within the student group, there was a desire to have multiple ways to input design information.
- Within the student group, there was the desire to see the old design information.
- Within the student group, there was a need to highlight the changes that happened.
- Within the faculty group, there was a desire for general purpose modules as opposed to problem specific modules.
- Within the faculty group, there was a desire for the software to be usable without a graphical user interface.
- Within both groups, there was a desire for a customizable or “universal” interface.
- Within both groups, there was a desire to automate part of the exploration process.

This list was full of surprises and opportunities to improve the modules. The largest find was the preference for customization within the interfaces. Interestingly this preference was first discovered inadvertently when the graphical editor of one of the modules was opened by mistake. Further inspection of the list yields few items that likely should have been expected, such as general purpose modules and the ability to see previously evaluated design information.

List 4. Expected and Unobserved Stakeholder Preferences/Needs

- The module does not return incorrect data.
- The module does not break or crash.
- The level of fidelity within the module is satisfactory.
- The module provides you with guidance to reach an optimum.
- Assessment occurs during or after module use.
- The time required to calculate results is minimal.
- No requirement to purchase additional software.

Within this final list, the majority of the preferences/needs were likely not stated due to assumptions made by the interviewee. For instance, it is not normal for software to purposely return incorrect data. However, it was surprising that not having to purchase additional software wasn’t mentioned. A likely explanation of this non-observation is that engineering students at North Carolina State University are able to freely download most engineering software, such as Matlab [42], and therefore are not concerned with the price of “free” software. It is important to note that there was some mention of limiting the hassle of downloading extra software.

3.2 Requirement Creation & Prioritization

This subsection discusses: 1) the thought process used during the creation of a requirements list from the stakeholder preferences/needs identified in the previous subsection, and 2) the inclusion of objectives into the process. A requirements list is used to help guide the evaluation of the generated concepts generated in Subsection 3.3. An initial requirements list for the modules is shown in List 5.

List 5. Requirements

- Allows user input
- Displays design information
- Displays performance information
- Has documentation
- Information returned is correct
- Does not crash
- Module calculates results in less than 15 seconds
- Student is able to get first result in less than 5 minutes
- Faculty can use the module in more than 1 assignment
- Functional outside of classroom (does not require specialized software)

Testing the initial requirements list on the original version of both modules led to the discovery that alone, the requirements provided very low fidelity in differentiating which modules could best overcome the four hurdles in List 1. Instead the requirements acted more as necessary conditions.

To overcome this limitation, objectives were created to supplement the existing requirements. The supplemental objectives list is shown in List 6. To better illustrate how the usage of objectives improves the concept evaluation process
consider the following example. There are two modules being considered, module A which has text input and module B which has both text and slider input. Using only the requirements, both modules would be considered equivalent when evaluated versus the “allows user input” requirement. However, when evaluated under the “maximize number of ways to interact” objective, module B is superior. Further, including arbitrary values in the requirements does little to increase their utility. Again, consider module A and module B from before. If the requirement was changed to “allows user at least 2 ways to interact”, module B would be considered to pass, while module A would fail. However, if module C was introduced with three input types, it would also pass and be considered equivalent to module B. However from an objective standpoint module C would be superior to both modules A & B.

List 6. Supplemental Objectives

- **Tier 1**
 - Minimize time to notice effect of input
 - Minimize number of tries to get results
- **Tier 2**
 - Minimize time to give guidance
 - Minimize time to get started
 - Maximize amount of information quickly available
 - Maximize number of ways to interact
- **Tier 3**
 - Minimize number of user input errors
 - Minimize number of unused parameters that are visible
 - Maximize number of parameter combinations that can be visualized
 - Maximize quantity of useful visual information
 - Minimize number of unlabeled items
 - Minimize time to get solution
 - Maximize size of useful visual information
 - Minimize number of clicks
- **Tier 4**
 - Minimize time to re-design/embodiment (the step after the software)
 - Maximize design space searched
 - Minimize size of overlap of visual information

To further improve the ability of the objective list to direct concept selection, the list was prioritized. The ability of each objective to overcome the four hurdles was the basis of the prioritization. For instance, will minimizing the overlap of visual information increase engagement? Further, will it increase the ease of use? In total four tiers were created. The top tier was viewed as objectives that impacted all four hurdles. The bottom tier contained objectives that only impacted a single hurdle. Once the list was prioritized, only the top two tiers of objectives were prioritized. This was to decrease the redesign time so that the interviewees would still be engaged in the project during the assessment phase.

3.3 Concept Generation & Selection

This subsection describes the concept generation and selection process. It also highlights some of the more interesting feature ideas that were included in the prototype modules. During the brainstorming phase, a mind map was created using the top two tiers of objectives from Subsection 3.2 as the main branches. The authors found many sources of innovation from this specific form of brainstorming. This can be attributed to the ease of representing certain ideas associated with software design with text as opposed to drawing them.

Using the ideas generated during the brainstorming phase a series of concepts were created and evaluated based on their ability to meet the requirements (List 5), satisfy the top two tiers of objectives (List 6), and be easily implemented. Motivation for ease of implementation is reducing the redesign time such that participant engagement remains high. The resulting final concepts can be seen below in Figures 4 and 5.

Figure 6 yields some interesting features. Examples that were not implemented include being able to set up a variable sweep for a quasi sensitivity analysis without having to write any code. Another is displaying a description of the modules actions at each major step allowing students to better understand how the code is working and thereby viewing it less as a magic box. As for implemented features, the airfoil module (Figure 4) included a table showing the design and performance information of the last five designs is included. The number five was chosen to limit the cognitive burden on the user. Within the propulsion module (Figure 5) the design and performance information of any plotted point was quickly available by hovering over the point. Additionally, clicking on a point in the design space set the inputs to the values of that design. Both modules were able to incorporate customization into their design by including drop down lists that allowed the user to change what values appeared on each axis.
Figure 4. Final Airfoil Module Concept

Figure 5. Final Propulsion Module Concept

Figure 6. Mind Map
3.4 Assessment

This subsection describes the process used to evaluate the prototypes version of the modules. These prototypes were created using the final concepts from Subsection 3.3 as blueprints. Screenshots of the prototypes can be seen in Figures 7 and 8.

The criteria chosen to assess the prototypes were the four hurdles (List 1) and the top two tiers of objectives (List 6). A questionnaire was then created that compared the first version of the software with the new prototypes using a five point Likert scale [43] ranging from Strongly Disagree to Strongly Agree. A list of the questions in the questionnaire is shown in List 7. Throughout the questionnaire, “Version 1” referred to the original module and “Version 2” referred to the prototype.

To gather the questionnaire data, students and faculty were shown one set of modules (i.e. both versions of the airfoil module) and asked to experiment with the software for 10 minutes. At the end of the 10 minutes they were given the questionnaire and informed they could experiment for 5 more minutes while they filled it out. The questionnaire was then collected and the process was repeated for the other set of modules (i.e. both versions of the propulsion module). Modules were shown in a random order to prevent bias and notes were kept to further refine the modules. In the next
section the results from these surveys as well as other lessons learned will be presented and discussed.

List 7. Sample Questionnaire

2. Version 2 is easier to use than Version 1.
3. Classroom deployment is easier with Version 2 than Version 1.
4. Version 2 increases the understanding of the material more than Version 1.
5. Reactions are observed quicker in Version 2 than Version 1.
7. Guidance is received quicker with Version 2 than Version 1.
8. The time to get started is shorter with Version 2 than Version 1.
10. There are more ways to interact with Version 2 than Version 1.

4. LESSONS LEARNED

In this section the results from two questionnaires, one for the airfoil module and one for the propulsion module, are discussed. Again, the respondents were asked a series of ten comparative questions (List 7) with responses ranging from 1 (strongly disagree) to 5 (strongly agree). The 12 respondents included students and faculty. The students ranged from sophomore level to graduate level and all were pursuing engineering degrees. The results of the ten questions are provided and discussed in the three subsections below.

4.1 Hurdle Analysis

In Section 1, four hurdles were identified (List 1) that hindered the successful integration of modules into existing engineering courses. In this subsection, the ability of the redesign process to address these four hurdles is discussed. Figures 9-12 show an overview of the responses to questions 1-4 from the questionnaires (List 7) that specifically address these hurdles. Table 1 shows the confidence intervals corresponding to the same group of data. A quick inspection of the figures indicates that both modules showed improvement from the redesign process. Also, the airfoil module showed greater improvement than the propulsion module. However, it is important to note that these results do not to say that the airfoil module is better equipped to overcome the four hurdles than the propulsion module.

Looking at the confidence intervals in Table 1, we see that the product design process was able to improve the abilities of both modules to overcome all four hurdles. This finding is very encouraging, especially since improvements were seen across all criteria for two independent modules.

Within the airfoil module, ‘ease of use’ displayed the largest improvement. This sentiment was reinforced by written feedback gathered within the questionnaire. Some sources of this improvement came from having an introductory sequence which gave the user some initial guidance. There was also an improved focus by removing a lot of the supplementary analysis buttons – which did not contribute to the primary goal - from version 1 of the software. These were placed in a separate window that could be accessed by clicking on an options button.

The propulsion module experienced its largest improvement in the level of engagement. Again this was helped by having an introductory sequence as well as customizable axes that allowed different input and output combinations to be explored. Within both modules, the ease of deployment showed the lowest level of improvement. This however was somewhat expected due the larger number of student respondents compared to faculty respondents. Students tended to mark neutral to this question whereas faculty tended to mark agree. From the written feedback it appears this hurdle could be further addressed by increasing the general purpose-ness of the modules. For instance, it is desirable for the modules to be applicable to multiple chapters or multiple courses. The reasoning behind this is to decrease the amount of “new” software students and faculty would have to learn.
Classroom deployment is easier with Version 2 than Version 1.

Version 2 increases the understanding of the material more than Version 1.

Table 1. 95% Confidence Intervals on Questions 1-4

<table>
<thead>
<tr>
<th>Question</th>
<th>Airfoil Average</th>
<th>CI</th>
<th>Propulsion Average</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>4.50</td>
<td>0.38</td>
<td>3.92</td>
<td>0.45</td>
</tr>
<tr>
<td>#2</td>
<td>4.83</td>
<td>0.22</td>
<td>3.75</td>
<td>0.43</td>
</tr>
<tr>
<td>#3</td>
<td>4.17</td>
<td>0.33</td>
<td>3.50</td>
<td>0.38</td>
</tr>
<tr>
<td>#4</td>
<td>4.58</td>
<td>0.38</td>
<td>3.67</td>
<td>0.37</td>
</tr>
</tbody>
</table>

4.2 Top Tier Objectives Analysis

In Subsection 3.3 a series of objectives were created to supplement the requirements list during the concept evaluation stage. The top two tiers of these objectives were used to help drive a portion of the brainstorming process as well (Figure 6). This subsection discusses how well the top tier objectives were met using the product design process. The objectives in this tier were a) minimize the time to notice the effect of input; and b) minimize the number of tries to get results. Figures 13-14 show an overview of the responses to questions 5-6 from the questionnaires (List 7) that specifically address these objectives. Table 2 shows the confidence intervals corresponding to the same group of data. The objectives in this tier were predicted to impact a module’s ability to overcome all four of the hurdles in List 1.

Results indicate that the redesigned modules did perform better with respect to both of the top tier objectives than the original modules. Interestingly, both modules had identical improvements in the “minimize the number of tries to get results” objective (Figure 14). Since the modules had different performance with respect to the four hurdles (List 1), this objective alone does not drive overall performance. The feature that most likely contributed to the increase in this objective was the inclusion of a feasible starting design. By including a feasible starting design the user was able to immediately experience success instead of struggling with the software to find a feasible design.

The “minimize the time to notice the effect of input” objective was the least improved objective within the propulsion module redesign. A quick review of the feedback highlights two issues that led to this minimal improvement. The first issue was the removal of an output box present in the original module. In the prototype, users found themselves relying solely on the plot for information. There was numerical data available within the plot when their cursor hovered on a point. However, the users rarely knew that they could do this.

To provide guidance throughout the use of the module, a message bar slide down from the top of the module. Inside this message bar would be hints and information regarding failure. Unfortunately, users tended to ignore this message bar as their focus was at the bottom of the page and on the “test design” button. This meant that the users rarely saw the hint to hover over the points in the plot and subsequently were slower to observe the effects of their inputs. To correct this, the authors envision providing the users with some method of feedback that appears nearer the “test design” button. This should reduce the time to observe the effects, as users won’t have to move their cursor across the page to find the numerical values.
Figure 14. Responses to Question #6
Version 2 requires fewer attempts to get results than Version 1.

Table 2. 95% Confidence Intervals on Questions 5-6

<table>
<thead>
<tr>
<th>Question</th>
<th>Airfoil Average</th>
<th>CI</th>
<th>Propulsion Average</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>#5</td>
<td>4.25</td>
<td>0.35</td>
<td>3.58</td>
<td>0.51</td>
</tr>
<tr>
<td>#6</td>
<td>3.92</td>
<td>0.56</td>
<td>3.92</td>
<td>0.56</td>
</tr>
</tbody>
</table>

4.3 Second Tier Objectives Analysis

This subsection discusses how well the second tier objectives were met during the redesign process. Again, these objectives were created in Subsection 3.3 to supplement the requirements list during the concept evaluation stage. The objectives in this tier were: 1) minimize the time to give guidance; 2) minimize the time to get started; 3) maximize the amount of information quickly available; and 4) maximize the number of ways to interact. These objectives were predicted to impact a module’s ability to overcome three of the four hurdles in List 1. Figures 15-18 show an overview of the responses to questions 7-10 from the questionnaires (List 7) that specifically address these objectives. Table 3 shows the confidence intervals corresponding to the same group of data.

Again, improvement was seen across the board for both modules. Interestingly, the propulsion module had larger improvements in two of the four objectives. In the previous two subsections, the propulsion module did not show improvements that were larger than the airfoil module.

The airfoil module experienced its highest and lowest improvements to objective values within this tier. The lowest improvement came from the “minimize the time to get started” objective, while the highest improvement came from the “maximize the amount of information quickly available” objective. There were several features that contributed to the large increase in “maximize the amount of information quickly available” objective, including help buttons that the user could click and receive either parameter definitions or an extensive help document. There was also a table displayed below the plot containing information on the last five evaluated designs. Similar types of information were available in the propulsion module, however as explained in Subsection 4.2 the users were not aware that additional information was available by hovering over points in the plot.

To improve the performance of the airfoil module with respect to the “minimize time to get started” objective, the authors anticipate showing the users a shorter introductory page. The length of the current introductory page was indicated in the written feedback as the reason for the low score. It was found that it took users around 5 minutes to read through the introduction page in the airfoil module whereas it took them around 1 minute in the propulsion module.

Also within this tier existed the objective that the propulsion module made the largest gains in, “maximize the number of ways to interact”. There were two primary features that lead to this improvement. The first was the combination of text and button input. With this combination the user could either type in a value or they could use arrow buttons to incrementally increase or decrease the value. The second feature was the ability to click on a point in the plot and have its values assigned to the inputs. Users found this “cool” and “useful”.

Figure 15. Responses to Question #7
Guidance is received quicker with Version 2 than Version 1.

Figure 16. Responses to Question #8
The time to get started is shorter with Version 2 than Version 1.
At the end of the 15 minute sessions, respondents generally came away impressed with the prototypes. Several of them commented that they liked the “new” version much better. Faculty had a similar view. Some of their comments included, “easier to use than Xfoil”, which is another piece of software used to evaluate airfoils. They also commented that “undergrads are always scared of new software, but you have eliminated that”. Conversations with the faculty also indicated some ways to increase the generality of the modules.

One way the authors anticipate increasing the generality of the modules is to separate the graphical interface from the computational part of the module. This would allow the users to choose how they interact with the module. For instance, a new user could be instructed to interact with the module using the graphical user interface, while a more experienced user could interact directly with the computational portion of the module using command line or another piece of code.

5. CONCLUSIONS

In this paper, the redesign of two computational modules for use in undergraduate engineering courses at North Carolina State University is presented. The first module focuses on the design of an airfoil, while the second focuses on the design of the propulsion system in a water powered rocket. Prototypes of the two modules were created and compared against the original versions of the modules using ten different criteria. Criteria 1-4 assessed whether the redesign process was able to improve the module’s ability to overcome four hurdles (List 1) that currently hinder the successful integration of modules into engineering courses. The results in Subsection 4.1 indicate that following a product design process improved the abilities of both modules to overcome all four hurdles. This finding is very encouraging, especially since improvements were seen across the board for both modules. It also supports the notion that a product design process can increase the value of educational tools. This leads to the question, “Why can’t the product design process be used to increase the value of other educational items?”

Criteria 5-6 assessed how well the top tier objectives were met during the redesign process. The results in Subsection 4.2 indicate that the redesigned modules did perform better with respect to both the top tier objectives than the original modules. This finding was also true of the second tier objectives (Subsection 4.3) which were the focus of the final four criteria. Overall the respondents, which consisted of students and faculty, came away impressed with the prototype modules. There were several comments about how much they liked the “new” modules. Further, one of the faculty commented that “undergrads are always scared of new software, but you have eliminated that”.

Throughout the redesign process several interesting items were discovered. During the customer interview phase (Subsection 3.1) there was an emphasis placed on documentation and guidance. In almost every interview there was a reference towards wanting to look something up or the need for a better explanation of what to do. One of the more surprising elements that came out of the customer interview phase was the need for a customizable user interface. In both prototype modules this need was addressed through the use of user defined axes. This feature allowed the user to define what parameter appeared on the x and y axes in the plot. During the creation of requirements (Subsection 3.2) it was discovered that the requirements alone did not provide adequate guidance in concept selection. This led to the creation of objectives to act as supplemental drivers for the concept selection process. The authors felt this greatly increased their ability to differentiate between concepts. In the concept generation phase (Subsection 3.3) several innovative features were

<table>
<thead>
<tr>
<th>Question</th>
<th>Airfoil</th>
<th>Propulsion</th>
</tr>
</thead>
<tbody>
<tr>
<td>#7</td>
<td>4.58</td>
<td>4.00</td>
</tr>
<tr>
<td>#8</td>
<td>3.75</td>
<td>4.00</td>
</tr>
<tr>
<td>#9</td>
<td>4.75</td>
<td>4.17</td>
</tr>
<tr>
<td>#10</td>
<td>4.17</td>
<td>4.25</td>
</tr>
</tbody>
</table>

Table 3. 95% Confidence Intervals on Questions 7-10
identified to address many of the customer needs. One of the more interesting features was the ability for users to hover over points in the plot and see the information (design and performance) associated with it. Additionally, the users could click on a point in the plot and have their inputs changed to match the selected point. This allowed users to quickly return back to a “good” design for further exploration.

As with most product design, there is a need to iterate as new issues and solutions are discovered. This product design experience was no different. Within the airfoil module the authors anticipate changes to the introductory phase of the module. Feedback from the respondents indicated that it took a “long” time to read through the introduction page. The time needed to read this page was observed to be roughly 5 minutes. The authors anticipate focusing the content on this page to reduce the time needed. Within the propulsion module it was found that the user focused on the bottom of the page where the “test design” button was. This meant that many of the users did not notice the information being displayed at the top of the page. To remedy this issue the authors anticipate bringing the critical information closer to the “test design” button.

The final area of change anticipated for these modules is the separation of the graphical user interface from the computational portion of the module. This change is needed for two reasons. The first reason is that the faculty have repeatedly expressed the need to have modules that are more general purpose. It is presumed that a separate computational portion of the code would allow for a specific module to be used in more than one chapter or course either by utilizing different functionalities at different times, possibly with different graphical user interfaces. The goal of this is to reduce the time needed for both students and faculty to gain a level of comfort with the software. The second reason for the separation is to allow the modules to be integrated into other software. This is especially important for the next phase of this research which will look at student interactions in multidisciplinary design environments.

This next phase of this research possesses similar motivation to this paper; that motivation being industry needs more engineers that are capable of working on multidisciplinary design problems. As mentioned in the introduction, multidisciplinary design problems possess too much information and complexity for a single person to be able to handle all the interactions that occur. However, students cannot effectively learn about multidisciplinary design until they have a foundation in traditional engineering design, hence the need for designing the modules in this paper. The authors anticipate that there are different ways to display design and performance information to students such that they will be encouraged to explore the design space as well as converge to an optimal design faster.

ACKNOWLEDGMENTS

We gratefully acknowledge support from the National Science Foundation through NSF Grant No. EEC-1037677, and from NC State University. Any opinions, findings, and conclusions presented in this paper are those of the authors and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

