A Comparison of the Quality of Data-driven Programming Hint Generation Algorithms

Thomas W. Price¹ Yihuan Dong¹ Rui Zhi¹ Benjamin Paasen² Nicholas Lytle¹ Veronica Cateté¹ Tiffany Barnes¹

¹North Carolina State University ²Bielefeld University

June 27th, 2019 - AIED
Programming Hints

1. On-demand
2. Next-step, edit-based
3. Data-driven

iSnap (Price 2017)
Programming Hints

iSnap (Price 2017)
ITAP (Rivers 2017)
Programming Hints

In the domain of programming, access to hints can:
- Improve post-test performance and efficiency (Corbett 2001)
- Improve future performance (under some circumstances) (Marwan 2019, forthcoming)

Data-driven techniques could make hints scalable, adaptive:
- Since 2008, over 25 papers on data-driven programming hints
- Evaluations focus on availability of hints, not quality (e.g. Peddycord 2014; Rivers 2017)

Not all programming hints are created equal (Price 2017):
- The quality of data-driven programming hints can vary considerably
- Even one low-quality hint can deter students from requesting future hints

![Histogram of Publications per Year]

- [2008, 2009] 1, 1
- [2009, 2010] 0, 2
- [2011, 2012] 0
- [2013, 2014] 4
- [2015, 2016] 5
- [2017, 2018] 7, 4
Proposed Contributions

1. **Methods**: QUALITYSCORE: A procedure for comparing the quality of hint generation approaches, that is *validated* and *reusable*.

2. **Results**:
 a) An evaluation of *six* hint generation algorithms on *multiple datasets* and multiple programming languages.
 b) Insight into current strengths and limitations of these algorithms.

3. **Data**: All data and code needed to rate a new algorithm available at: go.ncsu.edu/hint-quality-data
Data-Driven Hints Generation Algorithms

OVERVIEW OF THE SIX ALGORITHMS COMPARED
Data-driven Hint Generation

Inputs:
- Correct Solutions (training data)

Solution Space (one problem)

T-SNE embedding of iSnap data (Paaßen 2018)
Data-driven Hint Generation

Inputs:
- Correct Solutions (training data)
Data-driven Hint Generation

Inputs:
- Correct Solutions (training data)

Solution Space (one problem)

T-SNE embedding of iSnap data (Paaßen 2018)
Data-driven Hint Generation

Inputs:
- Correct Solutions (training data)
- Hint Request (purple)

Outputs:
- Next suggested snapshot/edit

Solution Space (one problem)

T-SNE embedding of iSnap data (Paaßen 2018)
Graph-based Approaches:
- Follow prior students’ paths to a solution

Solution Space (one problem)
T-SNE embedding of iSnap data (Paaßen 2018)
Graph-based Approaches:

1. NSNLS: Next Step of Nearest Learner Solution (Gross 2014)
 a) Find the closest partial student solution
 b) Suggest the next step

Solution Space (one problem)

T-SNE embedding of iSnap data (Paaßen 2018)
Graph-based Approaches:

1. **NSNLS** *(Gross 2014)*

2. **CTD: Contextual Tree Decomposition** *(Price 2016)*

 a) Decompose the source code into *subtrees*

 ◦ E.g. All code inside a given if-statement

 b) For each subtree, construct the solution space; suggest an edit

Solution Space (one problem)

T-SNE embedding of iSnap data *(Paassen 2018)*
Graph-based Approaches:

1. NSNLS (Gross 2014)
2. CTD (Price 2016)
3. ITAP (Rivers 2017)
 a) Identify the closest solution
 b) Select a target state
 c) Suggest a single edit
Solution Space (one problem)

T-SNE embedding of iSnap data (Paaßen 2018)

Graph-based Approaches:

1. **NSNLS** (Gross 2014)
2. **CTD** (Price 2016)
3. **ITAP** (Rivers 2017)

Solution-based Approaches:

4. **TR-ER** (Zimmerman 2015)
5. **SourceCheck** (Price 2017)
 a) Identify the closest solution
 b) Suggest edits to get closer to that solution
Graph-based Approaches:
1. NSNLS (Gross 2014)
2. CTD (Price 2016)
3. ITAP (Rivers 2017)

Solution-based Approaches:
4. TR-ER (Zimmerman 2015)
5. SourceCheck (Price 2017)
 a) Identify the closest solution
 b) Suggest edits to get closer to that solution
Graph-based Approaches:
1. NSNLS (Gross 2014)
2. CTD (Price 2015)
3. ITAP (Rivers 2017)

Solution-based Approaches:
4. TR-ER (Zimmerman 2015)
5. SourceCheck (Price 2016)

Machine Learning Approaches:
6. Continuous Hint Factory (Paaßen 2018)
 a. Predicts how successful students would edit their code
Method: QUALITYSCORE

REUSABLE QUALITY METRIC FOR DATA-DRIVEN HINT GENERATION
Data

iSnap *(Price 2017)*
- Novice programming environment
- On-demand data-driven hints
- 120 non-CS majors
 - Fall 2016 and Spring 2017
- 2 iSnap assignments
 - 10-13 lines of code
 - Loops, conditionals, variables, procedures
- Extracted 47 hint requests
 - One per student per problem
 - 23-24 per problem

ITAP *(Rivers 2017)*
- ITS for Python programming
- On-demand data-driven hints
- 89 students in introductory CS
 - Spring 2017
- 5 Python assignments
 - 2-5 lines of code
 - Loops, variables, string operations, arithmetic
- Extracted 51 hint requests
 - Up to two per student per problem
 - 7-14 per problem

```python
def isWeekend(day):
    return bool(day=='sunday' or day=='saturday')
```
QUALITYSCORE Calculation

1. 3 tutors independently generated Gold Standard hints for each hint request (e.g. Piech 2015)
 - Any hint voted valid by 2 out of 3 tutors included in G.S.

2. An algorithm generates hints for each hint request
 - It assigns a confidence weight to each hint it generates, summing to 1

3. Keep only hints which match a Gold Standard hint

4. QUALITYSCORE is the sum of the weights of the remaining hints
Partial Matches

A hint is a *partial match* to the gold standard when:
1. The hint suggests a *subset* of the edits of a gold standard hint
2. At least one of these edits adds code

Examples (Gold Standard vs Generated Hint):

```plaintext
return 'Hello World'       vs       return __'Hello-World'
repeat(x * 4)              vs       repeat(*__ * __)
return __ + __             vs       return __ BinOp __
```
Validating the QUALITYSCORE

Why not just have the tutors rate hints directly (e.g. Price 2017)?

- **Advantage of QUALITYSCORE**: We can scale this approach to any number of hint generation algorithms
- **Concern**: Does the QUALITYSCORE reflect human quality judgements?

Validation: Used QUALITYSCORE to rate 252 hints on the iSnap dataset, and asked 3 human tutors to do the same, come to consensus:

- Agreement (Cohen’s kappa) between QUALITYSCORE and consensus: 0.78
- Agreement each human tutor and consensus: 0.76, 0.78, 0.85
- **Conclusion**: QUALITYSCORE is as valid as a single human rater
Results

COMPARISON OF HINT GENERATION ALGORITHM QUALITY
Significant differences in ratings across algorithms ($p < 0.001$, both datasets):

iSnap (full or partial): TR-ER < NSNLS, CHF < CTD < SourceCheck < Tutors

Python (full matches): TR-ER, CTD < CHF, NSNLS < SourceCheck, ITAP < Tutors

Python (partial matches): TR-ER < NSNLS, CHF < CTD, SourceCheck < ITAP, Tutors
Performance is consistent across the two problems in the iSnap dataset.
Performance is not consistent across problems in the ITAP dataset.
What makes hint generation hard?

Some hint requests had lower-quality hints *across* algorithms. Why?

Hypotheses: Hint generation is more difficulty for...

- **Large Code**: The more code a student has written
 - ✓ Supported: $r_s = 0.376$ (iSnap) and 0.389 (ITAP); $p < 0.01$

- **Divergent Code**: The more unique a student’s code is compared to others’
 - ✓ Supported: $r_s = 0.356$ (iSnap) and 0.432 (ITAP); $p < 0.01$

- **Few Correct Hints**: The fewer Gold Standard hints there are
 - ✗ Not supported: No significant correlation
What makes algorithms perform poorly?

Some *algorithms* performed worse across hint requests. Why?

Hypotheses: Algorithms perform worse due to...

- Unfiltered Hints: Algorithms suggest too many hints
 - ✔ Supported: $r_s = 0.437$ (iSnap) and 0.487 (ITAP); $p < 0.001$
 - Algorithms generated more hints for larger code; humans did not

- Incorrect or Unhelpful Deletions: Many hints suggest deleting code only
 - ✔ Supported: Only 2.8% of generated deletion hints matched the gold standard
 - The best-performing algorithms did not suggest deletions (SourceCheck, ITAP)
Discussion
Top-performing Algorithms

SourceCheck (iSnap) and ITAP (Python) performed the best
- These algorithms were designed for their respective datasets
- However, SourceCheck still performs well on Python, outperforms its predecessor CTD

The ranking of the algorithms is consistent across datasets
Algorithms vs Human Tutors

Algorithms are beginning to approach human-quality hints

- ITAP performed 84% as well as human tutors on the Python dataset
- However, this is only for the simpler dataset, counting partial matches

More complex assignments remain difficult

- SourceCheck performed only half as well as human tutors on the iSnap dataset
- These assignments were longer (10-13 LOC vs 2-4) and more complex

<table>
<thead>
<tr>
<th></th>
<th>iSnap (n=61)</th>
<th>Python (n=51)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutors</td>
<td>0.80 (0.82)</td>
<td>0.79 (0.84)</td>
</tr>
<tr>
<td>ITAP</td>
<td>0.38 (0.44)</td>
<td>0.51 (0.71)</td>
</tr>
<tr>
<td>SourceCheck</td>
<td>0.40 (0.57)</td>
<td></td>
</tr>
</tbody>
</table>
Improving Hint Quality

Address current weaknesses:
- More emphasis on selecting the *right* hint when multiple can be generated
 - Also suggested in prior work (Price 2017)
- Avoid hints to delete without adding code

Recognize when a hint is unlikely to be high quality
- E.g., when the student’s code is unique

Evaluate the quality of new and existing algorithms
Thank You! Questions?

Contact: twprice@ncsu.edu

◦ Have a programming dataset with hint requests?
◦ Have a hint generation algorithm you would like to evaluate?
◦ Data Available: go.ncsu.edu/hint-quality-data
Secret Bonus Slides™
Gold Standard Hints

Code History

hint request

Next-step Hints
• Valid
• Useful
• Not confusing
• One edit (if possible)
Gold Standard Hints

Each tutor rates each other tutor’s hints:

Any hint with at least 2 votes part of the gold standard: