
DyTa: Dynamic Symbolic Execution Guided with Static
Verification Results

Xi Ge1 Kunal Taneja1 Tao Xie1 Nikolai Tillmann2

1Dept. of Computer Science, North Carolina State University, Raleigh, NC
2Microsoft Research, One Microsoft Way, Redmond, WA

{xge, ktaneja}@ncsu.edu, xie@csc.ncsu.edu, nikolait@microsoft.com

ABSTRACT

Software-defect detection is an increasingly important research

topic in software engineering. To detect defects in a program,

static verification and dynamic test generation are two important

proposed techniques. However, both of these techniques face their

respective issues. Static verification produces false positives, and

on the other hand, dynamic test generation is often time consuming.

To address the limitations of static verification and dynamic test

generation, we present an automated defect-detection tool, called

DyTa, that combines both static verification and dynamic test gen-

eration. DyTa consists of a static phase and a dynamic phase. The

static phase detects potential defects with a static checker; the dy-

namic phase generates test inputs through dynamic symbolic exe-

cution to confirm these potential defects. DyTa reduces the number

of false positives compared to static verification and performs more

efficiently compared to dynamic test generation.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification—

formal methods, reliability; D.2.5 [Software Engineering]: Test-

ing and Debugging—testing tools

General Terms

Software Engineering, Verification, Reliability

Keywords

defect detection, testing, static analysis

1. INTRODUCTION
Software testing is a common technique used to detect defects

in the program under analysis. Despite wide adoption, testing is

labor-intensive and time-consuming. To address the preceding is-

sue, various dynamic test generation techniques based on dynamic

symbolic execution (DSE) have been proposed [3, 8]. However,

due to the exponential path-exploration space of DSE, it is often

an expensive task to use it to generate test inputs that achieve high

code coverage or detect defects.

Unlike testing, static verification techniques [5, 2] analyze a soft-

ware representation of the program under analysis such as source

code or abstract model to find defects without actually executing

the program. However, due to the conservative nature of static ver-

ification techniques, many potential defects detected by static veri-

fication techniques turn out to be false positives, posing barriers for

applying these techniques in real-world circumstances.

Copyright is held by the author/owner(s).
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
ACM 978-1-4503-0445-0/11/05.

To address these issues faced by static verification or dynamic

test generation, we present a defect-detection tool, called DyTa,

that combines both static verification and dynamic test generation.

DyTa consists of a static phase and a dynamic phase. In the static

phase, Dyta applies a static verification technique [6] to analyze

the program under analysis. The output of this analysis is a warning

report that describes potential defects in the program under analysis

with their locations and descriptions.

In the dynamic phase, DyTa applies DSE [3], a state-of-the-art

dynamic test generation technique. DSE starts program exploration

with some default or random inputs. DSE then collects constraints

on program inputs from the predicates at the executed branching

statements in the program. These constraints at branching state-

ments are referred to as branch conditions. The conjunction of all

the branch conditions in the path followed during execution of an

input is referred to as a path condition. DSE keeps track of the

previous executions to build a dynamic execution tree. DSE, in the

next run, chooses one of the unexplored branching points1 in the

execution tree (dynamically built thus far). DSE flips the chosen

branching point to generate a new input that follows a new exe-

cution path. DSE repeats this process until full code coverage is

achieved or user-specified bounds are reached.

Additionally, in the dynamic phase, DyTa guides DSE to explore

the program under analysis by using information from the static

phase. DyTa uses locations of the statically detected potential de-

fects to prune irrelevant branches for flipping, so that DSE could

cover these potential defects more efficiently, DyTa extracts and

uses contract-violation conditions (i.e., error conditions) from the

descriptions of the potential defects, so that DSE could be guided

to satisfy these contract-violation conditions.

2. APPROACH
Our DyTa tool developed for the .NET Framework using

C# accepts as inputs the program under analysis and a warn-

ing report produced by a static checker for the program un-

der analysis. The output of DyTa is a set of confirmed de-

fects from the warning report. Figure 1 shows a screen-

shot of DyTa. The source code for DyTa is available at

http://pexase.codeplex.com/. A website of the DyTa

project is available at https://sites.google.com/site/

asergrp/projects/dyta .

2.1 Static Phase
In the static phase, DyTa analyzes and manipulates the program

1
A branching point in the execution tree of a program is an instance of a conditional

statement in the source code. A branching point consists of two sides (or more than

two sides for a switch statement): the true branch and the false branch. Flipping a

branching point is flipping the execution of the program from the true (or false) branch

to the false (or true) branch. Flipping a branching point for a switch statement is

flipping the execution of the current branch to another unexplored branch.



Figure 1: A screenshot of DyTa

under analysis statically. In this phase of DyTa, there are two steps:

potential-defect detection and code instrumentation.

Potential-Defect Detection. The Code Contracts tool [7, 6]

developed by Microsoft Research allows users to specify precondi-

tions, postconditions, and class invariants for C# code. The static

checker of Code Contracts is a static verification technique that an-

alyzes a program, reasons abstractly about unknown variables, and

tries to locate potential violations of contracts. In addition to user-

defined contracts, the static checker considers a set of primitive C#

operations as implicit violations of contracts such as dereferencing

a null pointer and division by zero. By applying the static checker

to the program, DyTa identifies a set of potential defects and col-

lects their locations and descriptions. The descriptions include the

types of potential defects and suggested preconditions to prevent

them from happening (suggested preconditions are not available

when inferring them is beyond the capability of Code Contracts’

static checker). In the first two columns of Table 1, we show exam-

ple descriptions for several potential defects. The view of listing

potential defects in the left-bottom region of Figure 1 shows a sum-

mary of the warning report generated by the static checker for a

hashing algorithm implementation [4]. The five columns show the

namespace, class, method, description, and offset2 of potential de-

fects, respectively.

Code Instrumentation. DyTa applies a DSE-based test-

generation tool Pex [10] in the dynamic phase (explained in

more detail in the next section). In order to make the pro-

gram under analysis more amenable for guided Pex exploration,

DyTa instruments the program under analysis. There are two

types of instrumentations that DyTa performs. (1) DyTa in-

serts a PexAssume.IsTrue method invocation at the beginning

of a public method for which a precondition is suggested by the

step of potential-defect detection. PexAssume.IsTrue speci-

fies constraints upon test inputs generated by Pex. By adding

the PexAssume.IsTrue invocation, DyTa filters out test inputs

that are impossible to trigger the potential defects to be run-

time failures. The instrumented PexAssume.IsTrue method

invocation takes as the argument the disjunction of negations

of the suggested preconditions in the preceding step. Sup-

pose that PCi is one of the preconditions suggested by Code

Contracts in the preceding step for a public method, DyTa

inserts PexAssume.IsTrue(!PC1‖!PC2‖...‖!PCn−1‖!PCn); at

the very beginning of this public method. (2) DyTa inserts a

BeforeWarning method invocation right before the location of

each potential defect. The BeforeWarning method serves as two

major purposes: guiding Pex exploration with additional branch-

ing points that specify contract-violation conditions, and reporting

the confirmation of the corresponding potential defects if such con-

2
The offset of a given potential defect is its line number inside the intermediate lan-

guage (IL) file where the potential defect lies.

Type of Potential Defect Suggested Pre-

condition

Contract Type Contract-violation

condition
Dereferencing a null pointer object != null Null_Pointer object == null
Possible division by zero Not available Div_By_Zero a == 0
Array access might be above

the upper bound

Not available Array_High index >=

this.values.Length
Array access might be below

the lower bound

index +3 >= 0 Array_Low index < 0

Table 1: Example potential-defect description and attained ar-

guments for a BeforeWarning method

ditions are satisfied. The BeforeWarning method has three ar-

guments: a predicate indicating the contract-violation condition,

an integer specifying the contract type, and an integer specifying

the instrumentation ID. DyTa attains the contract type by pars-

ing the warning report generated by the static checker, and at-

tains the contract-violation condition by analyzing the source code

at the locations of potential defects. DyTa assigns a globally

unique integer number to each BeforeWarning method invoca-

tion as an instrumentation ID3. The last two columns in Table 1

show the contract type and contract-violation condition arguments

of BeforeWarning corresponding to each example potential de-

fect.

2.2 Dynamic Phase
In the dynamic phase, DyTa applies Pex to the program under

analysis. Pex iteratively generates test inputs to cover various fea-

sible paths. In particular, Pex flips some branching points from pre-

vious runs to generate test inputs for covering new paths. Which

branching points are flipped next depends on the chosen search

strategy, such as depth-first search (DFS) or breadth-first search

(BFS). In our experience of applying Pex on real-world code bases,

we identify that Pex cannot explore the entire program due to expo-

nential path-exploration space. To address this issue, DyTa focuses

primarily on potential defects detected by the static checker.

In particular, to confirm the potential defects reported by the

static checker, DyTa often needs not flip many branching points in

the program under analysis. Pruning these branching points could

reduce Pex’s exploration space and improve test generation effi-

ciency. Here we adopt our previous work [9] to prune these irrel-

evant branches. In particular, by statically analyzing the control

flow graph of the program under analysis, DyTa finds out the set

of branching points whose the other unexplored branch does not

lead to any location of potential defects. Such branching points are

identified and would not be flipped during path exploration.

3. EXAMPLE
We next explain our approach using the code snippet shown

in Figure 2. In the static phase of DyTa, the static checker re-

ports a potential defect about array access below a lower bound

at Line 10 in the testme method shown in Figure 2. DyTa next

instruments this code snippet to facilitate the subsequent dynamic

phase. In this particular case, Code Contracts does not provide

any suggested precondition; therefore, only instrumentation for in-

serting a BeforeWarning method invocation is applicable. Be-

fore the location of the potential defect at Line 10, DyTa inserts

a BeforeWarning method invocation with the arguments of the

contract-violation condition, contract type, and instrumentation ID.

Figure 2 shows the instrumented version of the code snippet on

its left-hand side. Figure 3 also shows the method body of the

BeforeWarning method on its right-hand side.

After the static phase, DyTa statically analyzes the control flow

graph of the code under analysis to find out the branching points

whose flipping could be safely pruned. There are three branching

3
The BeforeWarning method uses an instrumentation ID to retrieve the infor-

mation of the corresponding potential defect. DyTa maintains a table that relates each

instrumentation ID with the entry in the warning report of the potential defect.



Figure 2: Example code snippet under analysis before instru-

mentation.

points in total for path exploration (including the predicate for the

contract-violation condition inside the BeforeWarning method),

which are at Lines 4, 6, and 25, respectively. By traversing the

control flow graph, DyTa finds out that when the false branch of the

branching point at Line 4 is taken by a certain test execution, there

would be no location of a potential defect being reached. Therefore,

flipping the true branch of the branching point at Line 4 could be

safely pruned.

In the dynamic phase, DyTa applies Pex to the instrumented

testme method in Figure 3 with a pruned exploration space. In

the first run, Pex arbitrarily chooses test input a=0 and b=0. There-

fore, the initial run takes true, false, and false branches at Lines

4, 6, and 25, respectively, and the path condition collected by Pex

is a>-3 && b<10 && condition==false.

Pex next tries to come up with a new test input by flipping a

branching point. Since flipping the true branch of the branching

point at Line 4 has already been pruned, Pex has to flip only ei-

ther the branching point at Line 6 or Line 25. If the DFS search

strategy is adopted, Pex would try to flip the branching point

at Line 25, and the resulting path constraint is a>-3 && b<10

&& condition==true. By consulting the underlying constraints

solver with the new path constraint, Pex gets test input a = 0 and

b = int.MinValue. Executing the code snippet with such input,

the BeforeWarning method finds out that the specified contract-

violation condition is satisfied. Therefore, the BeforeWarning

method logs that the corresponding potential defect is confirmed

and throws an index out of range exception. In the worst case, if

the BFS search strategy is adopted, Pex would try to flip the branch-

ing point at Line 6 first, and therefore takes one more run to confirm

the potential defect at Line 14.

By using Code Contracts alone, we are unable to confirm the

existence of a real defect at Line 10 in Figure 2. In contrast, DyTa

reduces false positives and reports real defects with full confidence.

By using Pex alone, we have a larger and less constrained explo-

ration space. On average, more runs are needed to confirm or detect

potential defects. In contrast, DyTa provides a more constrained

exploration space by considering the locations and the contract-

violation conditions of potential defects.

4. RELATED WORK
Csallner and Smaragdakis proposed Check n’ Crash [1], which

uses a static verification tool to infer abstract error conditions at the

program-input level and generates concrete test inputs from them.

Check n’ Crash first uses a constraint solver to generate inputs that

satisfy the abstract error conditions at the program-input level, and

then executes the program under analysis with such test inputs. If

failures are observed, potential defects are confirmed. One draw-

back of Check n’ Crash is that a generated test input cannot guar-

antee that the potential defect could be covered in the first place.

To address this issue, DyTa considers both locations of potential

Figure 3: Example code snippet under analysis after instru-

mentation and the BeforeWarning method body.

defects and error conditions at these locations, so that test inputs

could be generated with higher effectiveness.

5. CONCLUSION
Defect detection is a common process used to build high-quality

software. Much attention from both industry and academia is

drawn to automation of this process [3, 8, 5, 2]. Defect de-

tection is commonly accomplished with static verification and

dynamic test generation. However, both of these approaches face

their respective issues. To address these issues, we present a

defect-detection tool called DyTa that combines static verification

and dynamic test generation. DyTa takes advantage of dynamic

test generation to reduce false positives, and takes advantage of

static verification to guide exploration for dynamic test generation.

Acknowledgments. This work is supported in part by NSF grants

CNS-0716579, CCF-0725190, CCF-0845272, CCF-0915400,

CNS-0958235, an NCSU CACC grant, ARO grant W911NF-08-

1-0443, and ARO grant W911NF-08-1-0105 managed by NCSU

SOSI.

6. REFERENCES
[1] C. Csallner and Y. Smaragdakis. Check ’n’ Crash:

Combining Static Checking and Testing. In Proc. ICSE,

pages 422–431, 2005.

[2] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay.

Effective Typestate Verification in the Presence of Aliasing.

In Proc. ISSTA, pages 133–144, 2006.

[3] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed

Automated Random Testing. In Proc. PLDI, pages 213–223,

2005.

[4] hashing algorithms, 2010.

http://hashlib.codeplex.com/.

[5] D. Hovemeyer and W. Pugh. Finding Bugs is Easy. In Proc.

OOPSLA, pages 132–136, 2004.

[6] F. Logozzo. Practical Verification for the Working

Programmer with Code Contracts and Abstract Interpretation

(Invited Talk). In Proc. VMCAI, 2011.

[7] Microsoft Code Contracts, 2010.

http://research.microsoft.com/en-us/

projects/contracts/.

[8] K. Sen, D. Marinov, and G. Agha. CUTE: A Concolic Unit

Testing Engine for C. In Proc. ESE/FSE, pages 263–272,

2005.

[9] K. Taneja, T. Xie, N. Tillmann, J. de Halleux, and

W. Schulte. Guided Path Exploration for Regression Test

Generation. In Companion Proc. ICSE, NIER, pages

311–314, 2009.

[10] N. Tillmann and J. de Halleux. Pex: White Box Test

Generation for. NET. In Proc. TAP, pages 134–153, 2008.


