
Improving Software Quality via Code Searching and Mining

Madhuri R. Marri
Department of Computer Science

North Carolina State University

mrmarri@ncsu.edu

Suresh Thummalapenta
Department of Computer Science

North Carolina State University

sthumma@ncsu.edu

Tao Xie
Department of Computer Science

North Carolina State University

xie@csc.ncsu.edu

Abstract

Enormous amount of open source code is available on
the Internet and various code search engines (CSE) are
available to serve as a means for searching in open source
code. However, usage of CSEs is often limited to simple
tasks such as searching for relevant code examples. In this
paper, we present a generic life-cycle model that can be
used to improve software quality by exploiting CSEs. We
present three example software development tasks that can
be assisted by our life-cycle model and show how these
three tasks can contribute to improve the software quality.
We also show the application of our life-cycle model with a
preliminary evaluation.

1. Introduction
Open source code available on the Internet has become

a common platform for sharing source code. Programmers
often reuse the design of code examples or adapt code ex-
amples of existing open source projects rather than discov-
ering usage patterns by digging into documents. Currently,
the amount of open source code available on the Internet
is enormous. For example,sourceforge.net1, the world’s
most popular website for open source software develop-
ment, hosts about 179,518 projects with two million reg-
istered users and a large number of anonymous users. With
such enormous amount of open source code available on the
Internet, several code search engines (CSE) such as Google
code search [6], Krugle [7], Koders [1], Sourcerer [9], and
Codase [5] are developed to efficiently search for relevant
code examples (i.e., source files containing a search term).
These CSEs accept queries such as the names of classes or
methods of Application Programming Interfaces (API) and
search in CVS or SVN repositories of available open source
projects.

Although CSEs can serve as a means for searching in
enormous amount of open source code, the usage of CSEs
is often limited to simple tasks such as searching for rele-
vant code examples. In this paper, we propose a life-cycle

1http://sourceforge.net/

model2 that combines code searching through CSEs and
mining common patterns of API usages from gathered code
examples. Our proposed model can be used to assist three
main software development tasks: (1) to learn about an API
usage by automatically inferring programming rules (from
the mined patterns), (2) to use mined patterns to detect de-
fects in a program under analysis, and (3) to infer a fix that
needs to be applied for a detected defect.

There exist approaches [4, 8] that mine common usage
patterns (e.g., frequent occurrences of pairs or sequencesof
API method calls) as programming rules for software ver-
ification or software reuse. One common characteristic in
these existing approaches is that these approaches mine pat-
terns from a few code bases. Therefore, these existing ap-
proaches often cannot surface out many programming rules
as common patterns because there are often too few data
points in these code bases to support the mining of desirable
patterns [10]. In other words, the number of data points to
support a pattern related to a particular programming rule
is often insufficient. The drawback of these approaches is
reflected in empirical results reported by these existing ap-
proaches: often a relatively small number of real program-
ming rules were inferred from huge code bases.

A natural question to ask is whether a larger number of
code bases (such as a large scale of open source code) can
serve as an alternative data source for smaller code bases.
One issue with a larger number of code bases is that min-
ing a larger number of code bases is often not scalable. To
address this issue, we propose a life-cycle model based on
code searching and mining. In our life-cycle model, we ex-
pand the data scope to a larger number of code bases and
include techniques to address scalability issues. In particu-
lar, we search for relevant code examples using CSEs and
mine only those code examples. Our life-cycle model can
assist in improving software quality over different phases
of software development. We refer to our model as life-
cycle model since the mined patterns can be used for writing
new code, which can again be used as input for our model.

2The term life-cycle model is inspired from software development life
cycle and refers to the life cycle of mining patterns.



We applied our life-cycle model in our previous approach,
called PARSEWeb [10], that identifies frequent method-
invocation sequences to serve as solutions for queries of the
form “Source object type→ Destination object type”. In the
evaluation of PARSEWeb, we show that our model can ad-
dress issues that cannot be addressed by a CSE or any exist-
ing mining approach individually. We also show that code
examples gathered from a CSE require post-processing be-
fore mining common usage patterns. In this paper, we elab-
orate on the life-cycle model of code searching and mining.
We describe issues (and related post-processing techniques)
that need to be addressed before using gathered code exam-
ples for mining patterns. We also present the application of
our model in improving software quality with an emphasis
on the post-processing techniques.

2. Life-Cycle Model
We next describe our life-cycle model that exploits CSEs

and mines common patterns from gathered code examples.
These common patterns can be used in improving software
quality. Our model includes two phases:searchingandmin-
ing. In the searching phase, we use CSEs to gather relevant
code examples. In the mining phase, we analyze these code
examples and mine patterns that describe how to use an
API. Figure 1 presents an overview of our life-cycle model.
We next describe each phase in detail.

2.1 Searching

The searching phase includes two tasks:query construc-
tion andduplicate elimination.

Query Construction. In the query construction
task, we construct queries with API names as search
terms. For example, we construct the query “lang:java

org.apache.regexp.RE” to gather relevant code exam-
ples of theRE class from Google code search (GCS). These
code examples show how to use theRE class provided by the
Apache library [3]. GCS returns around2, 000 code exam-
ples for this query. Based on our experience with CSEs, one
observation with query construction is that therelevance3 of
resulting code examples mainly depends on the format of
the query issued to CSEs. Without a well-formulated query,
CSEs can result in a high number of irrelevant code exam-
ples. For example, to search for relevant code examples of
the fopen API, a basic search query on GCS is “lang:c

fopen”. This query returns around752, 000 code samples.
When the query is tuned to “lang:c file:.c$ [\ s \

*]fopen [\ s]?\(” (GCS supports search with regular
expressions), GCS returns689, 000 code examples. Among
the top 50 returned code examples, the number of relevant
code examples was found to be doubled among code ex-
amples returned by a specific query (query with regular ex-
pressions) when compared to that of a basic query. The

3A code example is relevant when it includes a call site of the required
API that is searched for.

Figure 1. Phases in the life cycle of mining
approaches based on code search engines

relevance (or quality) of gathered code examples plays an
important role in mining common patterns from the gath-
ered code examples. Although a programmer can decide to
filter out irrelevant code examples during either the search-
ing or mining phase, filtering out irrelevant code examples
using an appropriate query in the searching phase can help
reduce additional efforts in handling irrelevant code exam-
ples.

Duplicate Elimination. One observation with code ex-
amples returned by CSEs is that these code examples of-
ten include duplicate copies. We consider two code ex-
amples as duplicate of each other, if both belong to the
same project and the same source file. For example, among
the 2, 000 code examples returned by GCS for the query
“lang:java org.apache.regexp.RE”, the source file
JakartaRegexpRegexp.java is found 13 times. Among
these 13 copies, there are 5 different versions of the source
file and the remaining 8 copies are duplicates of these 5
versions. There are both desirable and undesirable conse-
quences with duplicate or multiple versions of source files
among code examples. For example, code examples that
are duplicate of the same source file, such as those belong-
ing to a particular jar file, can be found to be used in vari-
ous projects. The existence of duplicate or multiple copies
for a code example can indicate that the code example is
widely used and therefore the code example can be trusted
more than those code examples that do not have duplicate
or multiple versions. On the other hand, duplicate or mul-
tiple copies can bias the results of mining approaches that
try to mine common patterns. To mine unbiased patterns
used across a large number of code bases, we propose du-
plicate elimination to identify and filter out duplicate code
examples.

2.2 Mining

The mining phase includes three tasks:type resolution,
candidate extraction, and pattern inference. We refer to



01:import java.util.ArrayList;
02:import java.util.*;
03:Public class test {
04: public void method1(ArrayList list) {
05: Iterator iter = list.iterator();
06: while(iter.hasNext()) {
07: String str = (String) iter.next();
08: ...}}

Figure 2. A code example using Iterator

API.

these three tasks aspost-processing techniqueson gathered
code examples.

Type Resolution.In the type resolution task, we resolve
object types such as the return object type of a method call
in gathered code examples. These object types are neces-
sary for analyzing gathered code examples. In our model,
we cannot use traditional techniques for parsing and resolv-
ing object types. The primary reason is that CSEs often
return only individual source files (i.e., code examples) in-
cluding the search term, and these code examples are often
partial and not compilable. In our context, a partial code
example indicates that the code example is complete; how-
ever, the other source files on which the code example is de-
pendent upon are not available. To achieve the task of type
resolution, we use partial program analysis for resolving ob-
ject types. In our PARSEWeb approach [10], we developed
16 heuristics and these heuristics are contrary to type check-
ing done by a compiler. We next present a sample heuris-
tic for inferring fully qualified names using a code example
(shown in Figure 2) to show the use of these heuristics in
analyzing partial code examples.

Inferring fully qualified names.In Java, classes and inter-
faces have fully qualified names that can be extracted from
the class declaration. However, as our gathered code exam-
ples are partial, we infer fully qualified names fromimport
statements in these code examples. For example, the fully
qualified name of theArrayList class is inferred from the
import statement in Line 1. However, this heuristic can-
not infer the fully qualified name for theIterator class
referred in Line 5. The reason is that the relatedimport

statement in Line 2 uses* instead of theIterator class.
Our heuristics are not complete as these heuristics cannot
resolve entire type information. However, the evaluation re-
sults of our PARSEWeb approach show that these heuristics
are often effective in resolving required type information.

Candidate Extraction. In the candidate extraction
task, we analyze gathered code examples to extract pat-
tern candidates. These pattern candidates include infor-
mation about API usage. For example, a pattern can-
didate extracted from the code example in Figure 2 is
“Iterator.next should be preceded with aboolean
check onIterator.hasNext”.

Pattern Inference. In the pattern inference task, we ap-
ply mining techniques such as frequent subsequence min-

ing [2] on extracted pattern candidates to mine common
patterns of API usage. The details of these two tasks (candi-
date extraction and pattern inference) vary across the types
of problems being addressed using our model, whereas type
resolution is an essential task to resolve type informationin
gathered code examples.

3. Application of the Life-Cycle Model

In this section, we describe example software develop-
ment tasks that can be assisted by our life-cycle model and
show the utility of our model with a preliminary evaluation
done for one of these tasks.

3.1 Tasks Assisted by Life-Cycle Model

We expect that our life-cycle model can be used to im-
prove software quality over different phases of software de-
velopment by assisting three example major tasks.

Development. The patterns mined using our life-cycle
model can be used to assist programmers during the devel-
opment phase. These mined patterns provide common us-
age scenarios of how to reuse APIs and can be referred to
as specifications while writing code. We implemented an
approach, called PARSEWeb [10], based on our life-cycle
model. PARSEWeb can be used to assist programmers dur-
ing software development. The utility of the PARSEWeb
approach over a traditional approach based on a CSE is
shown in Section 3.2.

Verification . The patterns mined using our life-cycle
model can be used to detect deviant behavior in a program
under analysis. These patterns can be treated as specifica-
tions of an API usage and any deviation from the pattern
in a program under analysis can be reported as a violation.
For example, consider a pattern mined for thefopen API
of standard C library (stdio.h) as shown below:

API method: fopen
Condition check on "return" value
Condition Type: NULL-CHECK

The preceding pattern describes that a majority of gath-
ered code examples contain aNULL condition check on the
return value of thefopen method call. This pattern can be
used to detect defects related to missing condition checks
after thefopen API call in the program under analysis.
This example illustrates that our life-cycle model can be
used to detect defects in the verification task.

Maintenance. The patterns mined using our life-cycle
model can also be used for suggesting defect fixes during
the maintenance task. For example, consider the following
pattern related to theIterator.next method:

API method: Iterator.next
Condition check on "return" value of
Iterator.hasNext
Condition Type: BOOLEAN-CHECK



The preceding pattern describes that there should be a
boolean check on theIterator.hasNextmethod before
invoking theIterator.next method. Failing to perform
the boolean check can causeNoSuchElementException.
Consider that the verification task detects a violation of the
preceding pattern in a program under analysis. In this sce-
nario, we can suggest a defect fix based on the pattern.
For example, we can automatically perform defect fixing
by inserting aboolean check on theIterator.hasNext
method before theIterator.next method.

3.2 Preliminary Evaluation

We next show the utility of our life-cycle model over a
traditional approach of directly searching via a CSE with
an example task related to software development. We im-
plemented our life-cycle model in our previous approach,
called PARSEWeb [10]. PARSEWeb accepts queries of the
form “Source object type→ Destination object type” and
finds method-invocation sequences that produce the desti-
nation object type from the source object type.

We use a programming problem “org.

eclipse.ui.IWorkbenchWindow → org.eclipse.

ui.IViewPart” described in a previous related ap-
proach [8]. The programming problem can be in-
terpreted as that a programmer has an object of the
IWorkbenchWindow class, and the programmer wants
a method-invocation sequence to obtain an object of the
IViewPart class. We use four code search engines (GCS,
Koders, Krugle, and Codase) and PARSEWeb to investi-
gate how they can assist in addressing this programming
problem.

The minimal requirement for a code example to include a
solution method-invocation sequence is that the code exam-
ple should include both classesIWorkbenchWindow and
IViewPart. Therefore, we constructed a query with both
class names as search terms and used all four CSEs to gather
relevant code examples. GCS, Krugle, Koders, and Codase
returned 775, 112, 478, and 0 code examples, respectively.
We inspected the top ten code examples returned by each
CSE to check whether these code examples include a solu-
tion method-invocation sequence. We found that GCS and
Koders include a solution method-invocation sequence in
the sixth and eighth code examples, respectively. We could
not find any solution method-invocation sequence among
the code examples returned by Koders and Codase. There
are two major tasks that need to be carried out in using CSEs
directly for addressing this programming problem. First,
the programmer has to browse to the sixth or eighth code
example for getting a solution sequence. Second, the pro-
grammer does not have any knowledge whether this solu-
tion sequence is a commonly used method-invocation se-
quence. We next used PARSEWeb to recommend a solu-
tion for the programming problem. The solution sequence
recommended by PARSEWeb is shown as below.

... IWorkbenchWindow iwwObj;
IWorkbenchPage iwpObj = iwwObj.getActivePage();
IViewPart ivpObj = iwpObj.findView(String);

PARSEWeb analyzed code examples gathered from GCS
to generate sequence candidates. PARSEWeb used these
sequence candidates to mine commonly used method-
invocation sequence. PARSEWeb recommended a single
solution sequence that is a common sequence among gath-
ered code examples. This example shows the utility of our
life-cycle model used to develop our PARSEWeb approach.

4. Conclusion

We proposed a life-cycle model that can be used to
develop approaches based on code searching and mining.
We elaborated on the two phases of our life-cycle model
and suggested post-processing techniques for mining
patterns from gathered code examples. We also presented
three example software development tasks (that contribute
to improve software quality) that can be assisted by our
life-cycle model. Additionally, we highlighted the utility of
our life-cycle model with an approach developed based on
our life-cycle model.

Acknowledgments.This work is supported in part by NSF
grant CCF- 0725190, ARO grant W911NF-08-1-0443, and
ARO grant W911NF-08-1-0105 managed by NCSU Secure
Open Systems Initiative (SOSI).

References

[1] Koder’s Zeitgeist. http://www.koders.com/
zeitgeist/.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining as-
sociation rules in large databases. InProc. VLDB, pages
487–499, 1994.

[3] The Apache Jakarta Project, 2007.http://jakarta.
apache.org/regexp/.

[4] R.-Y. Chang, A. Podgurski, and J. Yang. Finding what’s not
there: a new approach to revealing neglected conditions in
software. InProc. ISSTA, pages 163–173, 2007.

[5] Codease, 2005.http://www.codase.com/.
[6] Google Code Search Engine, 2006.http://www.

google.com/codesearch.
[7] V. Magotra. The art of ranking code search results, 2006.

http://blog.krugle.com/?p=184.
[8] D. Mandelin, L. Xu, R. Bod́ık, and D. Kimelman. Jungloid

mining: helping to navigate the API jungle. InProc. PLDI,
pages 48–61, 2005.

[9] B. Sushil, N. Trung, L. Erik, D. Yimeng, R. Paul, B. Pierre,
and L. Cristina. Sourcerer: a search engine for open source
code supporting structure-based search. InProc. OOPSLA
Companion, pages 681–682, 2006.

[10] S. Thummalapenta and T. Xie. PARSEWeb: A Programmer
Assistant for Reusing Open Source Code on the Web. In
Proc. ASE, pages 204–213, 2007.


