Locality Phase Prediction

Xipeng Shen
Yutao Zhong Chen Ding
Department of Computer Science
University of Rochester
A Lesson from Nature

<table>
<thead>
<tr>
<th>Spring</th>
<th>Fall</th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
</table>

- People adapt, for example, by changing the wardrobe before winter
- Need to predict when winter comes
Motivation

- Memory performance
 - largely determines cost and energy
- Adaptation is increasingly used
 - dynamic data and computation reordering
 - dynamic cache resizing
 - dynamic memory remapping
- Need to predict locality phases
 - manual phase marking in past
Locality Phase

- A period of a program execution that has stable or slowly changing data locality inside but disruptive transition periods between phases
 - [Batson & Madison, SIGMetrics, 1976]
- We want phases with repetitive behavior
 - not necessarily uniform behavior
Locality Phase Examples

- **Unstructured mesh**
 - the computation sweeps through the mesh structure at each time step
 - e.g. the aging of an airplane
 - input-dependent memory behavior
 - repeat or slow-changing across time steps

- **Other scientific & commercial applications**
 - structural, mechanical, and molecular simulations
Outline

- Locality-based phase detection
 - to find repetitive memory behavior
- Program phase marking
 - to mark phases for all inputs
- Run-time prediction
 - to predict machine-dependent behavior
- Evaluation
- Summary
Locality Metric: Reuse Distance

- Defined on each element of a memory-access trace
- It is the number of distinct elements accessed between this and the previous access to the same element

Time: 1 2 3 4 5 6 7 8 9 10 ...
Accesses: b a b b c c b c a c ...
Locality Metric: Reuse Distance

- Defined on each element of a memory-access trace
- It is the number of distinct elements accessed between this and the previous access to the same element

Time: 1 2 3 4 5 6 7 8 9 10 ...
Accesses: b a b b c c b c a c ...
Locality Metric: Reuse Distance

- Defined on each element of a memory-access trace
- It is the number of distinct elements accessed between this and the previous access to the same element

Time: 1 2 3 4 5 6 7 8 9 10 ...
Accesses: b a b b c c b c a c ...
Reuse Distance as a Signal

- Defined on each element of a memory-access trace
- It is the number of distinct elements accessed between this and the previous access to the same element

Time: 1 2 3 4 5 6 7 8 9 10 ...
Accesses: b a b b c c b c a c ...
Reuse distance: ∞ ∞ 1 0 ∞ 0 1 1 2 1 ...
Reuse Distance Signal

One execution of Tomcatv from Spec95

![Graph showing reuse distance over time](chart.png)
Reuse Distance Signal

One execution of Tomcat v from Spec95

Reuse distance

Time

x 10^6

x 10^7
Basic Problem & Solution

- A search problem: to find a handful of phase changing points from billions of points

- Solution: to apply signal processing techniques to find disruptive behavior
Variable-length Sampling

- Sample only long reuse distances of representative memory locations
 - for example, 30 thousand samples out of billions of memory accesses
Wavelet Analysis

- The wavelet transform gives temporal-frequency information.
- FFT, in comparison, gives only frequency information.
Wavelet Analysis

- The wavelet transform gives temporal-frequency information.
- FFT, in comparison, gives only frequency information.
Locality Phase Detection

Program binary
Locality Phase Detection

Program binary \rightarrow variable-length sampling
Locality Phase Detection

Program binary

variable-length sampling

Each sampled variable yields a signal
Locality Phase Detection

Program binary -> variable-length sampling

Each sampled variable yields a signal
Locality Phase Detection

Program binary → variable-length sampling

Each sampled variable yields a signal

Wavelet

Find disruptions on each signal as possible phase boundaries
Locality Phase Detection

Program binary sampling

variable-length sampling

Each sampled variable yields a signal

Find disruptions on each signal as possible phase boundaries
Locality Phase Detection

Program binary → variable-length sampling

Each sampled variable yields a signal

Find disruptions on each signal as possible phase boundaries

Candidate phase boundaries → time → combine

wavelet
Locality Phase Detection

Each sampled variable-length sampling yields a signal.

Find disruptions on each signal as possible phase boundaries.

Program binary optimal phase partition (described in paper) combine time.
Locality Phase Detection

Program binary → variable-length sampling

Each sampled variable yields a signal

Find disruptions on each signal as possible phase boundaries

optimal phase partition (described in paper)

Candidate phase boundaries

Actual phase boundaries

combine

time

describe

wavelet

Each sampled variable yields a signal

Find disruptions on each signal as possible phase boundaries
Phase Hierarchy

One execution of Tomcatv from Spec95
Phase Hierarchy

One execution of Tomcatv from Spec95

Reuse distance

Time

\(x \times 10^6 \)

\(x \times 10^7 \)
Reuse Distance Vs. Cache Miss Rate

- hardware independent
- defined on each point, no need for windows
- a distance at each access

- hardware dependent
- interval-based, defined on windows
- hit or miss at each access
Outline

- Locality-based phase detection
 - find repetitive memory behavior
- Program phase marking
 - mark phases for all inputs
- Run-time prediction
 - predict machine-dependent behavior
- Evaluation
- Summary
Phase Marking

- **Objective:** to find a basic block that uniquely marks each phase boundary.
Run-Time Prediction

- When an instrumented program runs, we measure the behavior of the first few instances of a phase and use them as prediction for the later instances.
- We assume instances of a phase behave the same in one execution.
Outline

- Locality-based phase detection
- Program phase marking
- Run-time prediction
- Evaluation
 - Phase behavior consistency
 - Prediction accuracy
 - Example uses
- Summary
Cache Miss Rates of Tomcatv
(5250 instances of 7 phases)
Cache Miss Rates of Tomcatv
(5250 instances of 7 phases)

750 instances of Phase 2, whose length are about 2.5M instructions
TOMCATV Miss Rate Distribution (2493 Intervals)
TOMCATV Miss Rate Distribution (2493 Intervals)

2.97% execution inside this BBV phase bounding box
Prediction Accuracy

- Example benchmark: Mesh
 - dynamic mesh structure simulation
 - 5 billion run-time instructions
 - 4691 instances of 31 phases
Run-time Prediction of Mesh
Run-time Prediction of Mesh

First time entering Phase 300. Monitoring. No prediction.
Run-time Prediction of *Mesh*

First time entering Phase 300. Monitoring. No prediction.
Leaving Phase 300. Measured inst. = 2918191 cmr = 0.276.
Run-time Prediction of Mesh

First time entering Phase 300. Monitoring. No prediction. Leaving Phase 300. Measured inst. =2918191 cmr=0.276. First time entering Phase 308. Monitoring. No prediction.
Run-time Prediction of Mesh

First time entering Phase 300. Monitoring. No prediction.
Leaving Phase 300. Measured inst. = 2918191 cmr = 0.276.
First time entering Phase 308. Monitoring. No prediction.
Leaving Phase 308. Measured inst. = 273589 cmr = 0.125.
Run-time Prediction of Mesh

First time entering Phase 300. Monitoring. No prediction.
Leaving Phase 300. Measured inst. = 2918191 cmr = 0.276.

First time entering Phase 308. Monitoring. No prediction.
Leaving Phase 308. Measured inst. = 273589 cmr = 0.125.

Entering Phase 300. Pred. num. inst. = 2918191 cmr = 0.276.
Run-time Prediction of Mesh

First time entering Phase 300. Monitoring. No prediction.
Leaving Phase 300. Measured inst. = 2918191 cmr = 0.276.
First time entering Phase 308. Monitoring. No prediction.
Leaving Phase 308. Measured inst. = 273589 cmr = 0.125.
Entering Phase 300. Pred. num. inst. = 2918191 cmr = 0.276.
Leaving Phase 300. Measured inst. = 2918191 cmr = 0.276.
Run-time Prediction of Mesh

First time entering Phase 300. Monitoring. No prediction.
Leaving Phase 300. Measured inst. = 2918191 cmr = 0.276.
First time entering Phase 308. Monitoring. No prediction.
Leaving Phase 308. Measured inst. = 273589 cmr = 0.125.
Entering Phase 300. Pred. num. inst. = 2918191 cmr = 0.276.
Leaving Phase 300. Measured inst. = 2918191 cmr = 0.276.
Entering Phase 308. Pred. num. inst. = 273589 cmr = 0.125.
Run-time Prediction of Mesh

First time entering Phase 300. Monitoring. No prediction.
Leaving Phase 300. Measured inst. = 2918191 cmr = 0.276.

First time entering Phase 308. Monitoring. No prediction.
Leaving Phase 308. Measured inst. = 273589 cmr = 0.125.

Entering Phase 300. Pred. num. inst. = 2918191 cmr = 0.276.
Leaving Phase 300. Measured inst. = 2918191 cmr = 0.276.

Entering Phase 308. Pred. num. inst. = 273589 cmr = 0.125.
Leaving Phase 308. Measured inst. = 297334 cmr = 0.125.
Run-time Prediction of *Mesh*

First time entering Phase 300. Monitoring. No prediction.
Leaving Phase 300. Measured inst. = 2918191 cmr = 0.276.
First time entering Phase 308. Monitoring. No prediction.
Leaving Phase 308. Measured inst. = 273589 cmr = 0.125.
Entering Phase 300. Pred. num. inst. = 2918191 cmr = 0.276.
Leaving Phase 300. Measured inst. = 2918191 cmr = 0.276.
Entering Phase 308. Pred. num. inst. = 273589 cmr = 0.125.
Leaving Phase 308. Measured inst. = 297334 cmr = 0.125.
Entering Phase 300. Pred. num. inst. = 2918191 cmr = 0.276.
Run-time Prediction of Mesh

First time entering Phase 300. Monitoring. No prediction.
Leaving Phase 300. Measured inst. = 2918191 cmr = 0.276.

First time entering Phase 308. Monitoring. No prediction.
Leaving Phase 308. Measured inst. = 273589 cmr = 0.125.

Entering Phase 300. Pred. num. inst. = 2918191 cmr = 0.276.
Leaving Phase 300. Measured inst. = 2918191 cmr = 0.276.
Entering Phase 308. Pred. num. inst. = 273589 cmr = 0.125.
Leaving Phase 308. Measured inst. = 297334 cmr = 0.125.
Entering Phase 300. Pred. num. inst. = 2918191 cmr = 0.276.
Leaving Phase 300. Measured inst. = 2918191 cmr = 0.276.
Run-time Prediction of Mesh

First time entering Phase 300. Monitoring. No prediction.
Leaving Phase 300. Measured inst. = 2918191 cmr = 0.276.

First time entering Phase 308. Monitoring. No prediction.
Leaving Phase 308. Measured inst. = 273589 cmr = 0.125.

Entering Phase 300. Pred. num. inst. = 2918191 cmr = 0.276.
Leaving Phase 300. Measured inst. = 2918191 cmr = 0.276.

Entering Phase 308. Pred. num. inst. = 273589 cmr = 0.125.
Leaving Phase 308. Measured inst. = 297334 cmr = 0.125.

Entering Phase 300. Pred. num. inst. = 2918191 cmr = 0.276.
Leaving Phase 300. Measured inst. = 2918191 cmr = 0.276.
Prediction Accuracy

- **Relaxed prediction**
 - to predict all phases
 - we achieve 86% accuracy, and the predicted code is over 98% of the executions.

- **Strict prediction**
 - to only predict the stable phases, selected from the training run.
 - we achieve over 99% accuracy, and the predicted code is 73% of the executions.
Uses of Phase Prediction

- **Reconfigurable hardware**
 - Adaptive cache resizing [Albonesi et al., 2000]
 - reducing 40% cache size without increasing misses
 (interval-based methods reduce 6%)

- **Dynamic optimizations**
 - Phase-based dynamic memory remapping
 - assuming Impulse memory controller [Carter et al., 2001]
 - 36% speedup than the original program, compared with 13% using the global data reorganization
Other Approaches

- **Program code**
 - input independent and proactive
 - most limited to loops, regions, and subroutines

- **Runtime measurement**
 - exact
 - fixed-length intervals may not match phase length

- **Locality**
 - determines the memory behavior
 - difficult to analyze for complex programs
Conclusions

- Predicting hierarchical memory phases
 - combined locality, program, and run-time analysis
- Effective for programs with consistent phase behavior
- Accurate run-time prediction with low overhead
- Reducing 40% cache size without increasing misses
- Up to 35% speedup when used for memory remapping
The End

Thanks!