Diffusional Transformation I

Homogeneous Nucleation

\[\Delta G = V \Delta G_v + A \gamma + V \Delta G_s \]

\[\Delta G = \frac{4 \pi r^3}{3} (\Delta G_v + \Delta G_s) + 4 \pi r^2 \gamma \]

\[r^* = -\frac{2 \gamma}{\Delta G_v + \Delta G_s} \]

\[\Delta G^* = \frac{16 \pi \gamma^3}{3 (\Delta G_v + \Delta G_s)^2} \]

Strain energy

Fig. 5.2

Department of Materials Science and Engineering
Homogeneous nucleation rate vs ΔT

\[C^* = fC_0e^{-\frac{\Delta G^*}{kT}} \]

\[N_{\text{hom}} = fC^* = fC_0e^{-\frac{\Delta G^*}{kT}} \]

\[f = \omega e^{-\frac{\Delta G_m}{kT}} \]

\[N_{\text{hom}} = C_0\omega e^{-\frac{\Delta G_m}{kT}}e^{-\frac{\Delta G^*}{kT}} \]

\[\Delta G^* \propto \frac{1}{\Delta T^2} \quad \Delta G_m = \text{constant} \]
Heterogeneous Nucleation

\[\Delta G_{\text{het}} = \left[\frac{4\pi r^3}{3} (\Delta G_v + \Delta G_s) + 4\pi r^2 \gamma \right] S(\theta) + \Delta G_d \]

\[\Delta G_d = -\pi r^2 \sin^2 \theta \gamma_{gb} \]

Nucleation on grain boundaries

\[r^* = -\frac{2\gamma}{\Delta G_v + \Delta G_s} + \frac{\gamma_{gb} \sin^2 \theta}{2(\Delta G_v + \Delta G_s) S(\theta)} \]

\[\Delta G_{\text{het}}^* = \Delta G_{\text{hom}}^* S(\theta) - \Delta G_{\text{GB}}^* \]

\[S(\theta) = \frac{(2 + \cos \theta)(1 - \cos \theta)^2}{2} \]
Nucleation on dislocations:
- Reduced energy
- Faster diffusion
- Stacking faults between partials facilitate nucleation fcc->hcp nucleus

Excess vacancies:
- Increase the diffusion rate
- Form clusters

The easiness of nucleation (hard to easy, decreasing ΔG^*):
- Homogeneous Nucleation ➔ Vacancies ➔ Dislocations ➔ stacking faults ➔ Grain boundaries ➔ Free surface
Heterogeneous nucleation rate

\[N_{het} = C_1 \omega e^{\frac{\Delta G_{m}}{kT}} e^{\frac{\Delta G_{het}^*}{kT}} \]

\[\frac{N_{het}}{N_{hom}} = \frac{C_1}{C_0} \exp \left(- \frac{\Delta G_{het}^* - \Delta G_{hom}^*}{kT} \right) \]

For grain boundaries:

\[\frac{C_1}{C_0} = \frac{\delta}{D} \]

\(C_1 = \# \text{ of atoms on the defects, e.g. GB} \)
Precipitate growth

Growth of Planar Incoherent Interfaces (e.g. GB precipitates, rough interface)

\[x = K \sqrt{Dt} \quad v = \frac{\Delta X_0}{2(X_\beta - X_e)^2} \sqrt{\frac{D}{t}} \]

Grain boundary layer does not form continuous layer

Diffusion controlled growth

Fig. 5.16

Fig. 5.18

Department of Materials Science and Engineering
Diffusion controlled lengthening of plates/needles

\[v = \frac{D\Delta X_0}{k(X_\beta - X_r)} \frac{1}{r}(1 - \frac{r^*}{r}) \]

\[x = k t \]

Constant growth speed

Non-diffusion controlled
(short diffusion distance)

Fig. 5.19

Fig. 5.20
Thickening of plate-like precipitates

\[v = \frac{D\Delta X_0}{k(X_\beta - X_e)\lambda} \]

Constant growth speed

Non-diffusion controlled
Home Work

• Reading assignment : Ch. 5.4-5.5.4
• HW: 5.5, 5.6, 5.9