MSE 440/540: Processing of Metallic Materials

Instructors: Yuntian Zhu
Office: 308 RBII
Ph: 513-0559
ytzhu@ncsu.edu

Lecture 9: Forging
Forging

Deformation process in which work is compressed between two dies

- Oldest of the metal forming operations
 - Dates from about 5000 B.C.
- Products: engine crankshafts, connecting rods, gears, aircraft structural components, jet engine turbine parts
 - Also, basic metals industries use forging to establish basic shape of large parts that are subsequently machined to final geometry and size

http://www.youtube.com/watch?v=x_rl-oHr3nM
http://www.youtube.com/watch?v=PXVWiGqeltM
Classification of Forging Operations

• Cold vs. hot forging:
 – Hot or warm forging – advantage: reduction in strength and increase in ductility of work metal
 – Cold forging – advantage: increased strength due to strain hardening

• Impact vs. press forging:
 – Forge hammer - applies an impact force
 – Forge press - applies gradual force
Types of Forging Operations

• Open-die forging - work is compressed between two flat dies, allowing metal to flow laterally with minimum constraint

• Impression-die forging - die contains cavity or impression that is imparted to workpart
 – Metal flow is constrained so that flash is created

• Flashless forging - workpart is completely constrained in die
 – No excess flash is created
Types of Forging Operations

- (a) Open-die forging, (b) impression-die forging, and (c) flashless forging
Open-Die Forging

Compression of workpart between two flat dies

- Deformation operation reduces height and increases diameter of work
- Common names include *upsetting* or *upset forging*

http://www.youtube.com/watch?v=dK6eZGeDjZg

http://www.youtube.com/watch?v=tLRkOupbARM
Open-Die Forging with No Friction

• (1) Start of process with workpiece at its original length and diameter, (2) partial compression, and (3) final size

True strain:

\[\varepsilon = \ln \frac{h_o}{h} \]
Open-Die Forging with Friction

Actual deformation of a cylindrical workpart in open-die forging, showing pronounced *barreling*: (1) start of process, (2) partial deformation, and (3) final shape.
Impression-Die Forging

Compression of workpart by dies with inverse of desired part shape

- Flash is formed by metal that flows beyond die cavity into small gap between die plates
- Flash must be later trimmed, but it serves an important function during compression:
 - As flash forms, friction resists continued metal flow into gap, constraining metal to fill die cavity
Impression-Die Forging Practice

• Several forming steps are often required
 – With separate die cavities for each step
 • Beginning steps redistribute metal for more uniform deformation and desired metallurgical structure in subsequent steps
 • Final steps bring the part to final geometry

http://www.youtube.com/watch?v=mySkT0Gw_X0
Advantages and Limitations of Impression-Die Forging

• Advantages compared to machining from solid stock:
 – Higher production rates
 – Less waste of metal
 – Greater strength
 – Favorable grain orientation in the metal

• Limitations:
 – Not capable of close tolerances
 – Machining is often required to achieve accuracies and features needed
Flashless Forging

Compression of work in punch and die tooling whose cavity does not allow for flash

- Starting work volume must equal die cavity volume within very close tolerance
- Process control more demanding than impression-die forging
- Best suited to part geometries that are simple and symmetrical
- Often classified as a *precision forging* process
Flashless Forging (Closed Die Forging)

- (1) Just before contact with workpiece, (2) partial compression, and (3) final punch and die closure
Closed Die Forging

- Workpiece is completely trapped in the die and no flash is generated; die design and process variables must be carefully controlled
HW assignment

• Reading assignment: Chapters 13

• Review Questions: 13.10, 13.11, 13.12, 13.14,

• Problems: 13.10, 13.12, 13.14